

Proudly Operated by Battelle Since 1965

Reflections on the RCP Process (a.k.a. "Parallel Process")

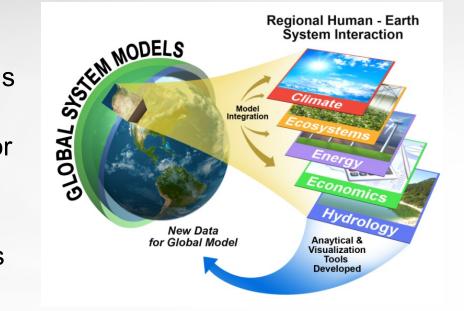
WGCM/AIMES 3 October 2013 Victoria, B.C.

Richard Moss

Joint Global Change Research Institute Pacific Northwest National Labotory and University of Maryland

College Park, MD

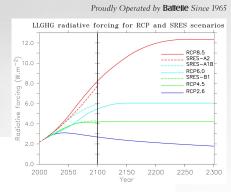
The author is grateful to the U.S. Department of Energy's Integrated Assessment Research Program and NASA's Earth System Science Program for research support.


PNNL-SA-94390

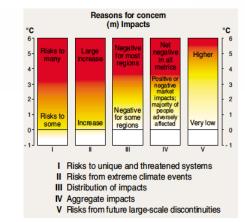
Proudly Operated by Battelle Since 1965

Stages of acceptance of state of regional climate modeling (after Elisabeth Kübler-Ross)

- Denial its good, really
- Anger so do regional forcings matter or not?
- Bargaining I'll do anything for significant regional results
- Depression why bother?
- Acceptance coming to terms by improving uncertainty characterization

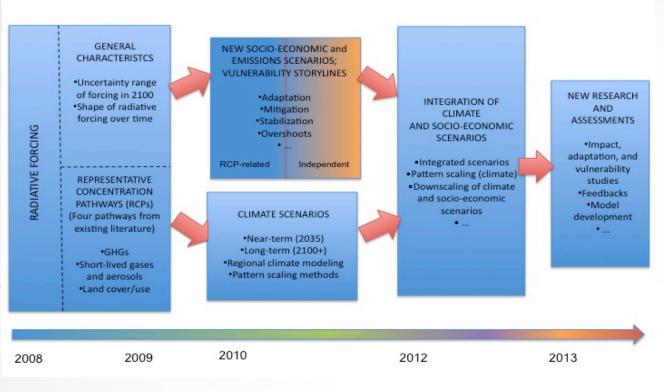


Uses of global change scenarios



Modeling

- Provide exogenous inputs to models
- Types: Socioeconomic, emissions, climate, firstorder impacts (SLR, hydrology, ...)
- Projections (based on assumptions) not predictions
- Assessment reports
 - Organizing and framing devices
 - Vast set of users, often unspecified
- Decision framing and "visioning"
 - Decision framing and feasibility testing
 - Normative
 - Can be backward looking: start with desired outcome and explore pathways to achieve it



Pacific Northwest

Proudly Operated by Battelle Since 1965

Parallel process

- Inputs to Earth system modeling
 - Standardized forcing over time
 - Avoid re-running ESMs for "trivial" changes in socioeconomics
- Broaden approach to socioeconomic scenarios
 - Increase time for development
 - More focus on IAV modeling applications
 - Explore futures to achieve pathways

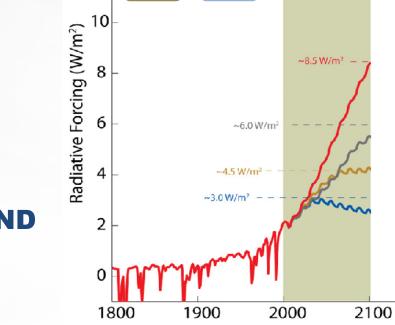
RCPs: four levels of radiative forcing

FORCING AGENTS

GHG Emissions and Concentrations from IAMs

Greenhouse gases: CO₂, CH₄, N₂O, CFCs, HFC's, PFC's, SF₆

Emissions of chemically active gases: CO, NO_x, NH₄, VOCs


- Derived GHG's: tropospheric O₃
- Emissions of aerosols: SO₂, BC, OC
- Land use and land cover

EXTENSIONS

Extension of scenarios to 2300—ECPs

WHAT YOU WON' T FIND

An integrated, harmonized set of detailed socioeconomic storylines and quantifications

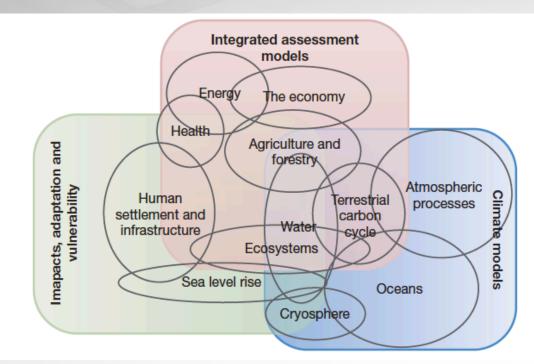
12 AM

History

Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

RCPs

Data at http://www.iiasa.ac.at/web-apps/tnt/RcpDb/ Documentation: Climatic Change 109:1-2 (2011) DOI: 10.1007/s10584-011-0148-z Source: Jae Edmonds


RCPs: What Have We Learned?

Proudly Operated by Battelle Since 1965

- Results to date: RCPs delivered and used in CMIP5 and impacts model intercomparisons (ISI-MIP; AgMIP)
- Evaluation and next steps
 - Continue to improve the "handshake process"
 - Consider whether we have the "right" RCPs
 - Improve interval ranges of emissions of chemically-active gases
 - Explicitly incorporate land use in radiative forcing
 - Improve parallel development of scenarios
 - What defines consistency between climate and socioeconomic futures?
 - Extensions (regional and sectoral)
 - Plan "integration phase" for climate, socioeconomic, and first-order impact scenarios
 - Pattern scaling uses and limits
 - Improve treatment and communication of uncertainty
 - Subjective probabilities of pathways (not of narratives)?

Increasing model overlaps – potential benefits Ofic Northwest NATIONAL LABORATORY Closer collaboration

- Inter-compare approaches (e.g., land use/cover, carbon, water, ...)
- Improve surrogate modeling for decision analysis
- Address key policyrelevant science questions related to
 - SLCFs
 - LU/LCC
 - Overshoot scenarios
 - "Costs and benefits" of different stabilization levels