Masa Kageyama, LSCE
PMIP3 in brief

- Currently: 21 modelling groups, 26 models
- PMIP3-CMIP5 simulations (# in CMIP db/# final number in CMIP/PMIP db):
 last millenium (8/15), mid-Holocene (13/21), Last Glacial Maximum (8/15)
- PMIP3 non CMIP5 simulations:
 last interglacial, Mid Pliocene, ...
- Scientific discussions organised with 11 working groups:
 - 5 on specific periods: past 2 millenia, Quaternary Interglacials, Mid-Pliocene, Pre-Pliocene climates, Last Glacial Maximum (ice-sheet uncertainties)
 - 3 on model-data comparison or proxy-modelling: isotopic modelling, paleo-data assimilation, ocean model-data comparison, benchmarking
 - 2 cross-cutting across periods: past2future, variability
Periods and Main Forcing(s)

<table>
<thead>
<tr>
<th>Period</th>
<th>Main forcing(s)</th>
<th>Scientific interest</th>
</tr>
</thead>
</table>
| Last Millenium | • Solar variability
 • Volcanic activity | • Natural climatic variability
 • Sensitivity to volcanic and solar forcings |
| Mid-Holocene (6000 years ago) | • Insolation
 (amplification of seasonal cycle in northern hemisphere) | • Changes in hydrological cycle (e.g. monsoons)
 • Changes in variability (e.g. ENSO) |
| Last Glacial Maximum (21,000 years ago) | • Lower CO2 (and other GHG)
 • Northern hemisphere ice-sheets | • Climate changes comparable to predicted future climate changes in amplitude
 • Potential constraints on climate sensitivity |

All three periods are well documented, with strong chronological constraints
Contribution to AR5

- 6 figures in paleoclimate chapter, 4 in evaluation chapter
- PMIP-CMIP and PMIP-non-CMIP simulations

WGCM17 - October 2013
PMIP-CMIP papers

- Officially in CMIP5 publication database:
 - 14 under « Paleoclimate » keyword
 - 12 for « lgm » experiment, 9 for midHolocene, 5 for past1000

- But there are more papers
 - Climate of the Past Special Issue on « Progress in Paleoclimate Modelling »
 - Wider search (ISI web of science, citeulike) gives ~32 papers + a number in discussions in EGU journals + some « regional » reports
 - Generally, « climate/paleoclimate papers » but 6 papers on impact on regional vegetation (Brazil)
 - A few papers from authors outside PMIP community

- Grand Challlenges will be a good opportunity to share paleodata/paleoclimate simulation analyses with people from outside the paleo community
Example 1: deep ocean LGM

Fig 9.18 from IPCC AR5
Example 2: Δprecip vs Δtemperature

Figure 2. The change in precipitation (%) as a function of the change in global temperature (°C) as simulated by each of the six CMIP5 models (IPSL-CM5A-LR, MPI-ESM-P, MIROC-ESM, CCSM4, MRI-CGCM3, and GISS-E2-R) at the Last Glacial Maximum (LGM), from the historical run (average for period 1979–2005 CE), the 1% CO$_2$ run (1pctCO$_2$, average for model years 86–115), and the 4xCO$_2$ run. The left-hand plot shows the global relationship, while the right-hand plots show the change in global precipitation (%) over (red) land and (blue) ocean as a function of the change in global land and ocean temperature (°C).
Summary of CMIP5 survey

- Real added value of having the same model versions used for past, present and future simulations
- Real added value of having all data on same « archive » system, including « PMIP3 but not CMIP5 » runs (although this was a little hard to achieve + some groups couldn’t have access to some nodes « because they were not CMIP5 »)
- Next time, need to be more careful about transition between past1000 and historical (in terms of forcing)
- Simulations with carbon cycle included interesting for comparing to data (e.g. ocean biogeochemistry)

→ A wealth of results which have just started to be analysed

- Need more time for analyses
 - In particular, need to get more « non paleo » groups involved in the analyses
Thoughts for CMIP6 -1

- Great benefit of running same models for all time periods, past, present & future → we should keep this approach
- For better comparison of past vs future climates, we would need one stabilized scenario (e.g. 4xCO2, for several hundred years). This would also be useful for studying changes in variability.
- Need to improve quantification of the forcings and their impact for each period and compare to forcings for other periods/future climate
 Sensitivity experiments to be designed in coordination with other MIPS: e.g. AMIP runs → AMIP4xCO2,
 but also AMIP_lgmCO2, AMIP_midHolocene insolation
Thoughts for CMIP6 -2

- New/interactive components?
 Vegetation (fully dynamical), aerosols, ice-sheets, « proxy modelling »
 → Discussion at next PMIP meeting

- Regional modelling:
 Interesting for model-data comparisons, already used to compute impact
 of climate change on paleo-environments and early humans
 → to be coordinated with CORDEX activities?

- New periods:
 Mid-Pliocene? Last Interglacial ?
 → to be discussed next May in PMIP3 general meeting
Thoughts for CMIP6 – contributions from paleo-modelling

- Evaluation: Climate sensitivity, benchmarking (including by modelling paleoclimate proxies) → link with future climate prediction
- Evaluation/understanding: hydrological cycle changes w.r.t temperature/circulation changes
- Evaluation/understanding: carbon cycle (proxies + feedbacks)
- Better quantification of the forcings/feedbacks via sensitivity experiments.
 - « new » feedbacks from components added in ESMs
 - Sensitivity experiments, to be coordinated with those run for other MIPs

→ Questions addressed in nearly all other MIPs are valid for paleoclimate simulations too.
Upcoming events

- Main PMIP plans to be discussed at next PMIP meeting in Namur (Belgium) in May 2014
- Workshops until then:
 - Last millenium: Madrid, November 2013
 - COMPARE (ocean model-data comparisons): Corvallis, December 2013
 - PaleoVar, February 2014
 - Grand Challenge on clouds, circulation, climate sensitivity, March 2014