Paleoclimate Modelling

's perspectives on CMIP6

Masa Kageyama, LSCE

- Currently: 21 modelling groups, 26 models
- ➤ PMIP3-CMIP5 simulations (# in CMIP db/# final number in CMIP/PMIP db): last millenium (8/15), mid-Holocene (13/21), Last Glacial Maximum (8/15)
- > PMIP3 non CMIP5 simulations: last interglacial, Mid Pliocene, ...
- > Scientific discussions organised with 11 working groups:
 - **5 on specific periods:** past 2 millenia, Quaternary Interglacials, Mid-Pliocene, Pre-Pliocene climates, Last Glacial Maximum (ice-sheet uncertainties)
 - **3 on model-data comparison or proxy-modelling**: isotopic modelling, paleo-data assimilation, ocean model-data comparison, benchmarking
 - 2 cross-cutting across periods: past2future, variability

in CMIP: motivations

Period	Main forcing(s)	Scientific interest
Last Millenium	Solar variabilityVolcanic activity	Natural climatic variabilitySensitivity to volcanic and solar forcings
Mid-Holocene (6000 years ago)	 Insolation (amplification of seasonal cycle in northern hemisphere) 	 Changes in hydrological cycle (e.g. monsoons) Changes in variability (e.g. ENSO)
Last Glacial Maximum (21000 years ago)	 Lower CO2 (and other GHG) Northern hemisphere ice- sheets 	 Climate changes comparable to predicted future climate changes in amplitude Potential constraints on climate sensitivity

All three periods are well documented, with strong chronological contraints

Contribution to AR5

> 6 figures in paleoclimate chapter, 4 in evaluation chapter

PMIP-CMIP papers

- ➤ Officially in CMIP5 publication database:
 - 14 under « Paleoclimate » keyword
 - 12 for « lgm » experiment, 9 for midHolocene, 5 for past1000
- But there are more papers
 - Climate of the Past Special Issue on « Progress in Paleoclimate Modelling »
 - Wider search (ISI web of science, citeulike) gives ~32 papers + a number in discussions in EGU journals + some « regional » reports
 - Generally, « climate/paleoclimate papers » but 6 papers on impact on regional vegetation (Brazil)
 - A few papers from authors outside PMIP community
- Grand Challenges will be a good opportunity to share paleodata/paleoclimate simulation analyses with people from outside the paleo community

Example 1: deep ocean LGM

Example 2: Δprecip vs Δtemperature

LI ET AL.: CMIP5 PRECIPITATION: TEMPERATURE SCALING

Figure 2. The change in precipitation (%) as a function of the change in global temperature (°C) as simulated by each of the six CMIP5 models (IPSL-CM5A-LR, MPI-ESM-P, MIROC-ESM, CCSM4, MRI-CGCM3, and GISS-E2-R) at the Last Glacial Maximum (LGM), from the historical run (average for period 1979–2005 CE), the 1% CO_2 run ($1pctCO_2$, average for model years 86-115), and the $4xCO_2$ run. The left-hand plot shows the global relationship, while the right-hand plots shows the change in global precipitation (%) over (red) land and (blue) ocean as a function of the change in global land and ocean temperature (°C).

Summary of CMIP5 survey

- Real added value of having the same model versions used for past, present and future simulations
- Real added value of having all data on same « archive » system, including « PMIP3 but not CMIP5 » runs (although this was a little hard to achieve + some groups couldn't have access to some nodes « because they were not CMIP5 »)
- ➤ Next time, need to be more careful about transition between past1000 and historical (in terms of forcing)
- > Simulations with carbon cycle included interesting for comparing to data (e.g. ocean biogeochemistry)
- → A wealth of results which have just started to be analysed
- Need more time for analyses
 - In particular, need to get more « non paleo » groups involved in the analyses

Thoughts for CMIP6 -1

- ➤ Great benefit of running same models for all time periods, past, present & future → we should keep this approach
- For better comparison of past vs future climates, we would need one stabilized scenario (e.g. 4xCO2, for several hundred years). This would also be useful for studying changes in variability.
- Need to improve quantification of the forcings and their impact for each period and compare to forcings for other periods/future climate

Sensitivity experiments to be designed in coordination with other MIPS: e.g. AMIP runs \rightarrow AMIP4xCO2,

but also AMIP_lgmCO2, AMIP_midHolocene insolation

Thoughts for CMIP6 -2

New/interactive components?

Vegetation (fully dynamical), aerosols, ice-sheets, « proxy modelling »

→ Discussion at next PMIP meeting

Regional modelling:

Interesting for model-data comparisons, already used to compute impact of climate change on paleo-environnements and early humans

→ to be coordinated with CORDEX activities?

New periods:

Mid-Pliocene? Last Interglacial?

→ to be discussed next May in PMIP3 general meeting

WGCM17 - October 2013 10

Thoughts for CMIP6 – contributions from paleo-modelling

- ➤ Evaluation: Climate sensitivity, benchmarking (including by modelling paleoclimate proxies) → link with future climate prediction
- Evaluation/understanding: hydrological cycle changes w.r.t temperature/circulation changes
- > Evalution/understanding: carbon cycle (proxies + feedbacks)
- Better quantification of the forcings/feedbacks via sensitivity experiments.
 - « new » feedbacks from components added in ESMs
 - Sensitivity experiments, to be coordinated with those run for other MIPs
- → Questions addressed in nearly all other MIPs are valid for paleoclimate simulations too.

Upcoming events

- Main PMIP plans to be discussed at next PMIP meeting in Namur (Belgium) in May 2014
- Workshops until then:
 - Last millenium: Madrid, November 2013
 - COMPARE (ocean model-data comparisons): Corvallis, December 2013
 - PaleoVar, February 2014
 - Grand Challenge on clouds, circulation, climate sensitivity, March 2014