MPI-M Perspectives

Bjorn Stevens
Managing Director
Max-Planck-Institut für Meteorologie, KlimaCampus Hamburg
• **MPI-ESM 1.1** is being finalized and will be released next year:
 - new treatment of radiation (PSRad); major bug fixes to clouds and convection; energy conservation.
 - five-layer soil hydrology; nitrogen cycle
 - last MPI-ESM with ECHAM/MPI-OM Core
 - ECHAM development to stop this year
 - Will be default model for CMIP6

• **MPI-ESM 2.0** is in development
 - joint development with DWD (dynamical core), DKRZ (computational layers), ETH (Chemistry & Aerosol)
 - Fully compressible equations solved on a semi-structured icosohedral (triangles) grid
 - Weak scaling on 65,000 processors, targeting a million cores
 - Atmosphere, Ocean and Land share a common infrastructure (time-control, grid, IO, etc)
 - Pre-operational with DWD physics
 - AMIP and OMIP simulations in early 2014
 - Cloud-resolving model – 100 m simulations over Germany planned for 2015.
CMIP5 Survey

- The RCP scenario choice and underlying story-line was not very transparent, and non-CO$_2$ forcings were not well treated (land cover, aerosol)

- Scenarios and projections should be de-emphasized in future CMIPs (just another MIP) and focus should be directed toward conceptual issues.

- Some other MIPS could be fine-tuned (assimilation for decadal prediction; merging of Past/Future forcing; station data and COSP output for CFMIP)

- Room for improvement in documentation of models (METAFORE was well motivated but too cumbersome), structuring of data (number of years in a file, sgs information), and data delivery (well known issues).
Vignette: Systematic biases in aerosol forcing

Albedo

-0.005
0
0.005

CERES Ed2.7

CMIP5 (15 Models)

Sin (latitude)
Vignette: Scenario similarity

Shown on right are different scenario runs with the MPI-ESM-LR. Left shows temperature change scaled by global average change. Right shows precipitation scaled by surface temperature change.
Vignette: Model Biases

CHANGE IN CLOUD RADIATIVE EFFECTS

CHANGE IN PRECIPITATION

MPI-ESM-LR
MIROC5
FGOALS-G2
IPSL-CM5A-LR

Stevens and Bony, Science (2013)
Perspectives and Recommendations

• Our center would benefit from an ability to distinguish between science and operational activities (e.g., scenarios, which in our case could be taken over by DKRZ – they would like this). This is why we have been advocating for and support a scenario MIP.

• We should work to ensure that CMIP is strongly identified with scientific questions (i.e., Grand Challenges) we need to be more proactive here.

• Climates of the recent and distant past are where scenarios and science overlap, and can be better emphasized in CMIP.

• Worried that modeling (and computational/data) centers risk being de-emphasized, need to think of a ways (high-profile CMIP paper with center involvement) to continue to bring their contributions to the forefront.