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Figure 9. Model estimate of 2100 w aiming re lative to present day (a vera ge, standard de viation and
full ange) forthe concentration dri ven runs from the CMIP5 models (full database available) and

from the 7 CM IP5 ESMs analysed here, and fort he emission dri ven runs from the 7 CMIP5 E SMs

analysed here and from the CMIP 3/C*MIP emulation using the M AGICC6 m odel.

Friedlingstein et al., submitted
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F1G. 2. Changes in total land carbon store (top) vegetation carbon (bo ttom left) and soil

carbon (defined as cSoil +cLitter; bottom right) for the CMIP5 models. An
observationally derived estimate ofnet changes (Arora et al., 2011) is shown by the

vertical pink bar in the top panel.
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Uoean carbon uptaks

In some cases,
uncertainties in models
as large as rcp
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F1G. 4. Changes in annual oceanic carbon uptake (top) and cumulative uptake since 1850
(bottom) from the CMIP5 models. An observationally derived estimate ofnet changes
(Arora et al., 2011; Le Quere, personal communication) 8 shown by the vertical pink bar
in the bottom panel.
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* The uncertainty in land carbon uptake due to
differences among models is comparable with
the spread of differences among RCP
scenarios and is due in part to differing
representation of anthropogenic land use
change. The CMIP5 models estimate
cumulative (2006-2100) fossil-fuel emissions
of 331+117, 8611160, 1147+124, 1783+187
PgC respectively for the RCP2.6, RCP4.5,
RCP6.0 and RCP8.5 scenarios.
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Ocean in 1994

Atmosphere in 1994
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Carbon Cycle Bias Conclusions

Tuning the carbon cycle to contemporary atm. CO, levels would
reduce future uncertainty in a given RCP scenario %ecause carbon
cycle biases are persistent on decadal timescales

For the next 50 years or so, structural biases regulating carbon-
concentration feedbacks and land use change emissions may be
more important error sources than climate-carbon feedbacks

Carbon — concentration feedbacks are linked with many structural
model components that do not change rapidly:

— Rates of Southern Ocean overturning
— Sensitivity of photosynthesis to elevated carbon dioxide
— Allocation of NPP to wood and litter

More fundamentally, on land, carbon cycle response times limited
by:

— Residence times of litter and soil carbon

— Lifetime of trees

— Timescales for recruitment and establishment of species

Hoffman et al.
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* [t's warming
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* Some areas get
more precip,
some less: some
coherence over
land

Mahowald et al., in prep



* P-E: some areas
moisture, some
not: not so
much coherence
over land
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* Above ground
vegetation
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change eyerywhere
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Most models
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Aerosols? Very limited comparison in
literature of CMIP5 (only Shindell et
al., ACCMIP; BC in ACCMIP)
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