

Chemistry-Climate Modeling Activities within WCRP SPARC / IGBP IGAC

Veronika Eyring DLR, Institut für Physik der Atmosphäre, Germany

16th Session of the Working Group on Coupled Modelling (WGCM) 24 September 2012, Hamburg, Germany

Overview

CMIP5 & Atmospheric Chemistry & Climate MIP (ACCMIP) results

Workshop IGAC/SPARC Workshop on Global Chemistry-Climate Modeling and Evaluation, Davos, May 2012

Chemistry-Climate Model Initiative (CCMI): New IGAC / SPARC initiative

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Ozone chemistry in CMIP5 simulations

Model	O3 chemistry		Prescribed ozone dataset
	Trop.	Strat.	
ACCESS1 -0	Р	Р	C ¹
ACCESS1 -3	Р	Р	C1
BCC-CSM1.1	Р	Р	C ¹
BCC-CSM1.1 -M	Р	Р	C ¹
BNU-ESM	SO	SO	P ²
CanAM4	Р	Р	C _{modB} ⁴
CanCM4	Р	Р	C _{modB} ⁴
CanESM2	Р	Р	C _{modB} ⁴
CCSM4	SO	SO	P ²
CESM1(BGC)	SO	SO	P ²
CESM1(CAM5)	SO	SO	P ²
CESM1(FASTCHEM)	1	I	
CESM1 (WACCM)	1	I	
CMCC-CM	Р	Р	C _{modA} ³
CNRM-CM5		1	
CSIRO - Mk3-6-0	Р	Р	C ¹
EC-EARTH	Р	Р	C ¹
FGOALS -g2	Р	Р	C ¹
FGOALS -s2	Р	Р	C ¹
FIO-ESM	Р	Р	C1
GFDL-CM3	I	I	
GFDL-ESM2G	Р	Р	C ¹
GFDL-ESM2M	Р	Р	C ¹

Model	O3 chemistry		Prescribed ozone dataset
	Trop.	Strat.	
GISS -E2-H p1	Р	Р	P ⁵
GISS -E2-H p2		-	
GISS -E2-H p3	Ι	-	
GISS -E2-R p1	Р	Р	P ⁵
GISS -E2 -R p2	1		
GISS -E2-R p3	- 1	I	
HadCM3	Р	Р	C _{modA} ²
HadGEM2 -CC	Р	Р	C _{modA} ²
HadGEM2 -ES	I	Р	/ C _{modA} ²
HadGEM2 -AO	Р	Р	C _{modA} ²
INM-CM4	Р	Р	C^1
IPSL-CM5A-LR	SO	SO	P ⁶
IPSL-CM5A-MR	SO	SO	P ⁶
IPSL-CM5B-LR	SO	SO	P ⁶
MIROC - ESM	Р	Р	P ⁷
MIROC-ESM-CHEM	- 1		
MIROC4h	Р	Р	P ⁷
MIROC5	Р	Р	P ⁷
MPI-ESM-LR	Р	Р	C _{modA} ²
MPI-ESM-P	Р	Р	C _{modA} ²
MRI-CGCM3	Р	Р	C ¹
NorESM1 -M	SO	SO	P ²
NorESM1 -ME	SO	SO	P ²

CHEM: 18 of 46 CMIP5 models with interactive (I) or semi-offline (SO) chemistry

NOCHEM: 28 of 46 CMIP5 models with prescribed ozone (P), mostly based on the original or a modified version of the Cionni et al. (2011) dataset (C).

Ozone chemistry in CMIP5 simulations

- In contrast to CMIP3, where half of the models prescribed a stratospheric ozone climatology instead of a timeseries, the CMIP5 models all consider past ozone depletion and future ozone recovery, either prescribed or interactive.
- This results in substantial improvements of stratospheric ozone compared to CMIP3, leading to a more realistic representation of the effects of anthropogenic forcings on stratospheric temperatures and subsequent impacts on tropospheric climate.
 Evring et al., JGR, subm., 2012

Atmospheric Chemistry-Climate Model Intercomparison Project (ACCMIP) Coordinated by Jean-Francois Lamargue and Drew Shindell

Goal of Phase 1 (within AR5 deadline)

- Document & analyze the radiative forcing in CMIP5 simulations \succ
- Evaluate underlying chemistry used for providing concentrations & depositions in \geq CMIP5
- Participating models (output available now, * is CMIP5 model) \succ

 - EMAC-DLR (Germany) 11. NIES (Japan)* 3.

 - 5. GISS (USA)*
 - 6. LSCE (France)* 14. UEDI (UK)
 - 7. LLNL-NCAR (USA)

- 1. CCCma (Canada) 9. NCAR CAM3.5 (USA)*
- 2. CICERO (Norway) 10. NCAR CAM5.1 (USA)
- 4. GFDL (USA)* 12. NIWA (New Zealand)
 - 13. UKMO (UK)*

Goal of Phase 2: sensitivity experiments (after AR5 deadline)

Papers submitted (others are in preparation):

- ACCMIP overview and models: Lamarque et al., GMDD, 2012. •
- Global air quality and climate, Fiore et al., Chem Soc Rev, 2012. •
- **Ozone budget, time evolution**, Young et al., ACPD, 2012.
- **Observational constraints on ozone RF,** Bowman et al., ACPD, 2012.
- Ozone RF, Stevenson et al., ACPD, 2012. •
- Long-term changes in BC (based on ice cores), Lee et al., 2012. •
- Aerosol forcing, Shindell et al., ACPD, 2012.
- iture exidetion 9 methons Voulgerakis at al ACDD 2012

Atmospheric Chemistry-Climate Model Intercomparison Project (ACCMIP)

Changes in annual-mean surface ozone

Workshop IGAC/SPARC Workshop on Global Chemistry-Climate Modeling and Evaluation, Davos, May 2012

Rationale for the workshop

Background:

- (i) Increasingly, the chemistry and dynamics of the stratosphere and troposphere are being modeled as a single entity in global models (and increasingly a coupled ocean).
- (ii) Tropospheric and stratospheric global chemistry-climate models are continuously being challenged by new observations and model intercomparisons.
- (iii) There is a need to better coordinate the previously separate activities addressing these two domains and to assess scientific questions in the context of comprehensive stratosphere-troposphere resolving models with chemistry.

Recommendation from SPARC CCMVal Report:

(i) Development should continue towards comprehensive troposphere-stratosphere CCMs, which include an interactive ocean, tropospheric chemistry, a naturally occurring QBO, spectrally resolved solar irradiance, and a fully resolved stratosphere.

Goals of the Workshop CCMVal ACCMIP Hindcast Goals of the workshop:

- 1. Improvements in process-oriented evaluation and understanding of CCMs (including extending the CCMVal approach to the troposphere).
- 2. Identifying observations for model evaluation and new methods for improved comparability between models and observations.
- 3. Defining community-wide simulations in support of upcoming ozone and climate assessments and for process studies

Example GOAL 2: Improved comparability between models & observations

Consider issues like

>Sampling of the model output at the times and locations of the measurements (e.g. satellite simulators)

>Combination of different insitu campaigns into one database with a horizontal grid comparable to that used in CCMs (Emmons et al., 2000).

>Collecting observations in a format similar to the models (e.g., obs4MIP)

- > FORMED AN EXPERT GROUP THAT WILL MOVE THIS FOREWARD (led by Tom Ryerson, NOAA)
- Released a first version of the CCMVal Diagnostic Tool (Gettelman et al., GMD, 2012)

High-altitude and long-range research aircrafts

HIAPER (High-performance Instrumented Airborne Platform for Environmental Research) Pole-to-Pole Observations (HIPPO) of Carbon Cycle and GHG Study

ESMVal (Earth System Model Validation) High Altitude and LOng Range (HALO) Mission - DLR Project -

IGAC/SPARC Chemistry-Climate Model Initiative (CCMI)

- Clear recommendation from the CCM community to create a joint IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) to coordinate future (and to some extent existing) IGAC and SPARC chemistry-climate model evaluation and associated modeling activities.
- CCMI will encompass (or supersede) CCMVal and other MIPs

Moving forward:

>Document summarizing the new community-wide CCMI simulations finalized by Nov 2012.

➢White paper summarizing the goals of CCMI, including a more detailed summary of the workshop, will be published in the IGAC and SPARC newsletters in early 2013.

➤CCMI website will be created

► BAMS paper on model evaluation planned (similar to CCMVal BAMS paper).

>Next CCMI workshop: Boulder 13-17 May 2013

Proposed CCMI Timeline: PHASE 1 and 2

