Climate Change Studies in Japan

The 2nd phase of Japanese global warming project on the Earth Simulator (Kakushin Program; 2007-2012)

- Team 1: Long-term (JAMSTEC/NIES/AORI) Tokioka
 - MIROC-ESM (T42L80+1.0x1.4L44+carbon cycle+aerosols+chemistry)
 - NICAM global CSRM, EMIC for uncertainty
 - physics ensemble
 - detailed dyn veg
 - crop yields, high tides

• Team 2: Near-term (AORI/NIES/JAMSTEC) Kimoto

- MIROC AOGCMs (T213AGCM+1/4x1/6OGCM+aerosols; medres(T85) as well)
- Initialization w/ obs. + 10-member ensemble
- Flood/drought risk assessment
- Regionally hi-res OGCM
- Team 3: Hi-res time-slice (MRI/JMA) Kitoh
 - 20km AGCM + 1km nested regional model near Japan
 - Impact on hydrology, flood risk assessment, Typhoons

Teams 1-3 all consist of Modelling/Uncertainty/Impact study componer # ES was upgraded in March 2009 (2.x times faster)

Update on Japanese activity for CMIP5

Masahide Kimoto

Atmosphere and Ocean Research Institute 🧼

The University of Tokyo

Japanese GCMs to enter CMIP5						
	Model name	Model category	Institute	Spec		
Near-Term	MIROC4h	AOGCM	AORI/NIES/ JAMSTEC	T213L56+20km L48 AOGCM w/ aerosol		
	MIROC5	AOGCM	AORI/NIES/ JAMSTEC	T85L40+1ºL50 New Physics		
	MRI-CGCM3	AOGCM	MRI/JMA	TL159L48+1°L51		
Long-Term	MIROC-ESM	ESM	JAMSTEC/ AORI/NIES	T42L80+1°L44 w/ carbon cycle		
	MIROC-ESM-CHEM	ESM	JAMSTEC/ AORI/NIES	T42L80+1°L44 w/ carbon cycle + chemistry		
	MIROC5	AOGCM	AORI/NIES/ JAMSTEC	T85L40+1°L50 New Physics		
	MRI-ESM1	ESM	MRI/JMA	TL159L48+1ºL51		
	MRI-CGCM3	AOGCM	MRI/JMA	TL159L48+1°L51		
Time Slice	MRI-AM20km MRI-AM60km	AGCM	MRI/JMA	TL959(20km)L64 TL319(60km)L64		

Atmospheric Chemistry model: O_3 , O, O1D, N, N, O, NO₂, NO₃, N₂O₅, HNO₃, HNO₄, H₂O₂, CO, C₂H₆, C₃H₈, C₂H₄, C₃H₆, ONMV, C₅H₈, C₁₀H₁₆, CH₃COCH₃, CH₂O, CH₃CHO, CH₃OH, NALD, MGLY, HACET, MACR, PAN, MPAN, ISON, CH₃OOH, C₂H₅OOH, C₃H₇OOH, ISOOH, HOROOH, CH₃COOH, MACROOH, O₃S, O1DS, SPRSO₂, SPRSO₄, OCS, CH₄, N₂O, CI, CIO, OCIO, CIOOCI, CIONO₂, HOCI, HCI, CI₂, CH₃CI, CCI₄, CH₃CCI₃, CFC11, CFC12, CFC113, HCFC22, Br, BrO, BrONO₂, HOBr, HBr, CH₃Br, Br₂, BrCI, H1211, H1301, CHBr₃, H, OH, HO₂, CH₃O₂, C₃H₇O₂, CH₃COO₂, CH₃COO₂, CH₃COC₂, HOC₂H₄O₂, HOC₃H₆O₂, ISO₂, MACRO2 (84 speces)

58 chem. tracers; 58 photo-dissociation reactions; 184 chem. reactions

Linear trend in annually averaged surface air temperature (1951-2005)

RCP CO₂ concentration scenarios and globally averaged surface air temperature

Required anthropogenic CO₂ emission from fossil fuels for RCP concentration scenarios

carbon storage changes in ocean and land

Land use change scenarios in RCP

時系列グラフは1500年からの各土地利用が占める割合の変化 空間分布図は、非農業用地(=1次植生+2次植生)の2000年からの変化量(赤:増加、青:減少)

Projected UV-B increase by MIROC-ESM-CHEM

オゾン

太陽

オワン層

エアロソル

Decadal Prediction Experiments by MIROC

	MIROC3m	MIROC4	MIROC5		
Atmosphere	300km L20	60km L56	155 km L44		
Ocean	1.4° x 0.5-1.4° L44	0.28° x 0.19° L48	1.4° x 0.5-1.4° L50		
Forcing	CMIP3/SRESA1B	CMIP5/RCP4.5	CMIP5/RCP4.5		
Initialization	Ocean T&S IAU (0 ∼700m)	Ocean T&S IAU (0~3000m) Eddy Conserving	Ocean T&S IAU (0∼3000m)		
Ensemble generation	E Ta at 130m As 60N 30N EQ 30S 60S	for shares and the shares of t	i 130m <smooth> in in)</smooth>		
Ensemble Size	60E 120E 180 1	20W 60W 0 60E 120E	180 120W 60W 0		
Historical	-3 -2 -1 0	1 2 3 -3 J	-2 -1 0 1 J		
Assimilation	10	1	3		
Hindcasts	10	3	6		
Document	K-1 model	Sakamoto et al.	Watanabe et al.		
http:	://amaterasu.ees.hokudai.ac.jp/~fswiki/pub/wiki.cgi?page=CMIP5				

Predictable Component SVD1 SVD2

SVD between **OBS SAT and** 1-3yr HCST Obs

Based on a 3-model ensemble (MIROC3m, MIROC4h, MIROC5)

JJA 2011

Predicted near-term changes in Typhoons Monte Carlo ensemble **MIROC** ensemble AORI 250 15 15 250 -200 -150 -100 -50 --50 --100 --150 --200 -Number of TYs **OBS ASSIM PRED(all) OBS ASSIM PRED** 10 10 5 -5 -10 -10cor = 0.55 (79-04) cor = 0.75 (79-04)-15 -250 -15 , 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 **Genesis Frequency Genesis Frequency** Future(2016-35) - Present Present(1963-89) Future(2016-35) - Present Present(1950-89) 40N 40N 40N · 40N 30N 30N 30N 30N 20N 20N 20N 20N 10N 10N 10N 10N FΟ FO ΕQ 150F 165E 180 135E 150E 165E 180 105E Occurrence Frequency 1-0-0-0.5-0.5-0.5-0.4-0.3-0.2-0.10.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 -1 -0.9-0.8-0.7-0.8-0.5-0.4-0.3-0.2-0.10.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x10⁻² Occurrence Frequency x10 Future(2016-35) - Present Present(1950-89) Present(1963-89) Future(2016-35) — Present 40N 40N · 40N 40N 30N 30N · 30N 30N 20N 20N 20N 20N 10N 10N 10N 10N 95% EQ F۵ EQ FQ 150E 150E 150E 165E 180 105E 120E 135E 165E 180 105F 120E 135E 165E 180 105E 120E 135E 105E 120E 135E 150F 1.00 1.00 1.00 1.00 0.00 0.00 0.00 1.00 1.2 1.30 1.5 ×10 x10-2 x10⁻¹

Problems with the previous 20-km mesh MRI-AGCM

Number for each basin denotes the annual mean number of TCs.

Predicted TC number in the WNP is underestimatedImprovedTC intensity is weak compared with observationsImproved

Murakami et al. (2011, submitted)

Comparison of projected future changes between models - Frequency of TC occurrence -

- over the South Pacific and western portion of WNP
- Both models show significant increase in TC frequency over the central Pacific
- Inconsistent in the eastern quadrant of WNP

Comparison of projected future changes between models - TC intensity -

- Both models show significant decrease in the frequency of weak TCs
- New model projects a more subtle increase in the frequency of intense TCs

Future changes in TC frequency and genesis frequency

