The Continual Intercomparison of Radiation Codes (CIRC)

Eli Mlawer¹ and Lazaros Oreopoulos² co-chairs of CIRC WG (IRC and GRP)

¹AER, Lexington, MA, USA ²NASA-GSFC, Greenbelt, MD, USA

CIRC motivation/history

- Issues with radiation codes found in Intercomparison of Radiation Codes used in Climate Models (ICRCCM) (~1990) led to DOE Atmospheric Radiation Measurement (ARM) program (early 1990s)
- ARM continuous measurements allowed in-depth comparisons of radiation measurements and models (i.e. radiative closure studies) → improvements to RT models
- Maturity of ARM data streams led to overarching radiative closure study Broadband Heating Rate Profile (BBHRP) project (~2002)
- Bill Rossow, then head of GEWEX Radiation Panel, proposed new RT code intercomparison effort based on BBHRP --- subsequently approved by GRP

From *Collins et al. (2006)* RT Code Intercomparison study:

• GCM RT codes exhibited "substantial discrepancies" relative to reference calculations from detailed "line-by-line" RT models

What CIRC is about

- RT model intercomparison intended to be the standard for documenting the performance of RT codes used in Large-Scale Models (LSMs)
- Working group within International Radiation Commission (IRC) and GRP
- Goal is to have RT codes of GCMs (incl. IPCC) report performance against CIRC
- Phase 1 was launched on June 4, 2008
- Phase "1a" was launched on January 19, 2010 (16 simpler variants of Phase I cases)
- Website: <u>http://circ.gsfc.nasa.gov</u>

How CIRC differs from previous intercomparisons:

- *Observation-tested* (LW) LBL calculations are used as radiative benchmarks
- Benchmark results are publicly available
- Observationally-based input (chiefly from ARM BBHRP product)
- Intended to have flexible structure and be continual (i.e. updated periodically)

CIRC website

http://circ.gsfc.nasa.gov

Climate and Radiation Branch

NASA | Goddard | Lab for Atmosphere:

CIRC: Continual Intercomparison of Radiation Codes

Home	Rationale	Input	Output	Cases	Results	Submit	Updates	Contact

What is CIRC?

CIRC is in many respects the successor to the seminal ICRCCM (Intercomparison of Radiation Codes in Climate Models) effort that spanned the late 80's - early 00's. CIRC distinguishes itself from ICRCCM by its emphasis on using observations to build its catalog of cases. It is intended as an evolving and regularly updated reference source for GCM-type radiative transfer (RT) code evaluation, and similar to ICRCCM, its goal is to contribute to the improvement of solar and thermal RT parameterizations. CIRC is supported by DOE's Atmospheric Radiation Measurement (ARM) program and endorsed by the GEWEX Radiation Panel (GRP) and IAMAS's International Radiation Commission (IRC). More information on the rationale behind CIRC can be found here. The invitation letter that launched Phase I on June 4, 2008 is available in this page.

Register as a CIRC participant

While anybody can download the input files needed for the radiative transfer runs and the reference output results, we urge users of this website to register as "CIRC participants". Registered CIRC participants will enjoy benefits such as:

- Updates via e-mail about improvements, additions, and corrections to the reference dataset and the accompanying documentation.
- An opportunity to have their results compared to those of other participants.
- Invitation to workshops on CIRC.
- Invitation to coauthor scientific papers on CIRC.

Please register as a CIRC participant by sending your name, affiliation and e-mail address to Lazaros Oreopoulos.

Home Rationale Input Output Cases Results Submit Updates Contact

CIRC Phase I *baseline* cases

Case	SZA	PWV (cm)	τ _{aer}	LWP (gm ⁻²)	LW _{SFC}	obs - L LW _{TOA}	BL (%) SW _{SFC}	SW _{TOA}
(1) SGP 9/25/00	47.9°	1.23	0.04		0.5	-0.9	0.5	-3.1
(2) SGP 7/19/00	64.6°	4.85	0.18		0.6	-1.4	-1.1	8.4
(3) SGP 5/4/00	40.6°	2.31	0.09		1.0	-1.2	-0.1	-8.7
(4, 5) NSA 5/3/04 2xCO ₂)	55.1°	0.29	0.13		1.2	-0.6	-0.8	0.7
(6) SGP 3/17/00	45.5°	1.90	0.24	263.4	1.1	-3.0	4.9	-0.9
(7) PYE 7/6/05	41.2°	2.42		39.1	0.2	0.6	-0.4	-0.1

LW QC: LBLRTM spectral comparisons with AERI

Phase I subcases ("Phase 1a")

- Launched January 2010
- Simplified versions of baseline cases
 - Spectrally flat surface albedo
 - No aerosol
 - No cloud
- 16 additional SW cases and 2 additional LW cases
- No radiative closure with observations (naturally)
- Expected better performance relative to LBL.

Longwave code participants

Model Index	Brief Model Description	In LSM?	Experiment variants	Submitted By	Reference(s)
0	LBLRTM v.11.1/HITRAN 2004, MT_CKD_2.0, AER_V_2.0	No	None	Delamere, Mlawer	Clough et al. (2005)
1	RRTM-LW, 10-3000 cm ⁻¹ , CKD, 16 bands, 256 g-points	No	None	lacono, Mlawer	Mlawer et al. (1997); Clough et al. (2005);
2	RRTMG-LW, 10-3000 cm ⁻¹ , CKD, 16 bands, 140 g-points	Yes	None	lacono	Mlawer et al. (1997); lacono et al. (2008)
3	CLIRAD-LW, 0-3000 cm ⁻¹ , k- distribution and one- parameter scaling, 10 bands, 85/113 k-points	Yes	"High/Low" accuracy	Oreopoulos	Chou et al. (2003)
4	CCC 0-2500 cm ⁻¹ , CKD, 9 bands, 56 g-points	Yes	With/without scattering	Cole, Li	Li (2002); Li and Barker (2002); Li and Barker (2005);
5	FLBLM, 40-3000 cm ⁻¹ , line- by-line,	No	With/without scattering	Fomin	Fomin (2006)
6	FKDM, 40-3000 cm ⁻¹ , CKD, 23 g-points	No	None	Fomin	Fomin (2004)
7	CAM 3.1, 0-2000 cm ⁻¹ , absorptiviy-emissivity approach	Yes	None	Oreopoulos	Collins et al. (2004)
8	FLCKKR (LW), 0-2200 cm ⁻¹ , CKD, 12 bands, 67 g-points	No	None	Rose	Fu and Liou (1992); Fu et al. (1997)
9	RRTMG-LW (as implemented in FMI ECHAM5.4), 10-3000 cm ⁻¹ , 16 bands, 140 g-points	Yes	None	Räisänen	Mlawer et al. (1997); lacono et al. (2008)
10	ES, 10-3000 cm ⁻¹ , 9 bands/33 g-points, ESF of band transmissions	Yes	With/without scattering	Manners	Edwards and Slingo (1996); Edwards (1996)
11	GISS, 50-2000 cm ⁻¹ , CKD, 33 g-points	Yes	With/without scattering	Zhang, Rossow	Zhang et al. (2004)

GCMs Using CIRC LW RT Codes

Model Index	Brief Model Description	In LSM?	Experiment variants Submitted By	Reference(s)
0	LBLRTM v.11.1/HITRAN 2004, MT_CKD_2.0, AER_V_2.0	No	-	Clough et al. (2005)
1	RRTM-LW, 10-3000 cm ⁻¹ , CKD, 16 bands, 256 g-points	No	-	Mlawer et al. (1997); Clough et al. (2005);
2	RRTMG-LW, 10-3000 cm ⁻¹ , CKD, 16 bands, 140 g-points	Yes	CAM5 (CESM), NCEP GFS/CFS, ECMWF IFS, LMDZ, CMA, GEOS-5 (dev.)	Mlawer et al. (1997); lacono et al. (2008)
3	CLIRAD-LW, 0-3000 cm ⁻¹ , k- distribution and one- parameter scaling, 10 bands, 85/113 k-points	Yes	GEOS-4, GEOS-5	Chou et al. (2003)
4	CCC 0-2500 cm ⁻¹ , CKD, 9 bands, 56 g-points	Yes	CanAM4 (dev.)	Li (2002); Li and Barker (2002); Li and Barker (2005);
5	FLBLM, 40-3000 cm ⁻¹ , line- by-line,	No	-	Fomin (2006)
6	FKDM, 40-3000 cm ⁻¹ , CKD, 23 g-points	No	-	Fomin (2004)
7	CAM 3.1, 0-2000 cm ⁻¹ , absorptiviy-emissivity approach	Yes	CAM 3.1	Collins et al. (2004)
8	FLCKKR (LW), 0-2200 cm ⁻¹ , CKD, 12 bands, 67 g-points	No	- (production of CERES products)	Fu and Liou (1992); Fu et al. (1997)
9	RRTMG-LW (as implemented in FMI ECHAM5.4), 10-3000 cm ⁻¹ , 16 bands, 140 g-points	Yes	ECHAM 5.4	Mlawer et al. (1997); lacono et al. (2008)
10	ES, 10-3000 cm ⁻¹ , 9 bands/33 g-points, ESF of band transmissions	Yes	HadGEM	Edwards and Slingo (1996); Edwards (1996)
11	GISS, 50-2000 cm ⁻¹ , CKD, 33 q-points	Yes	NASA GISS (also ISCCP flux products)	Zhang et al. (2004)

Shortwave code participants

Model Index	Brief Model Description	In LSM?	Experiment variants	Submitted By	Reference(s)
0	CHARTS v.4.04/LBLRTM v.11.1/ HITRAN2004, line-by-line	No	None	Delamere, Mlawer	Moncet and Clough (1997); Clough et al. (2005)
1	RRTM-SW, 0.2-12.2 μm, CKD, 14 bands, 224 g-points	No	None	lacono, Mlawer	Clough et al. (2005)
2	RRTMG-SW, 0.2-12.2 μm , CKD, 14 bands, 112 g-points	Yes	None	lacono, Mlawer	lacono et al. (2008)
3	CLIRAD-SW, 0.175-10 μm, 11 bands, pseudo- monochromatic/k-distribution hybrid, 38 k-points	Yes	Two R _{sfc} averaging methods	Oreopoulos	Chou et al. (1998); Chou and Suarez (2002)
4	CCC, 0.2-9.1 μm, CKD, 4 bands, 40 g-points	Yes	Three R _{sfc} averaging methods	Cole, Li	Li and Barker (2005); Li et al. (2005)
5	FLBLM/ HITRAN 11ν, 0.2-10 μm, line-by-line	No	None	Fomin	Fomin and Mazin (1998)
6	FKDM, 0.2-10 μm, CKD, 15 g- points	No	Two treatments of cloud optical properties	Fomin	Fomin and Correa (2005)
7	CAM 3.1, 0.2-5.0 µm, 19 spectral and pseudo-spectral intervals,	Yes	Two R _{sfc} averaging methods	Oreopoulos	Briegleb (1992); Collins (2001); Collins et al. (2004)
8	FLCKKR (SW), 0.175-4.0 μm, CKD, 18 bands, 69 g-points	No	Two R _{sfc} averaging methods	Rose	Fu and Liou (1992)
9	FMI/ECHAM5.4, 0.185-4 μm, 6 bands, Padé approximants to fit transmission functions	Yes	Two R _{sfc} averaging methods	Räisänen	Fouquart and Bonnel (1980); Cagnazzo et al. (2007)
10	Edwards-Slingo 0.2-10 μm, 6 bands, ESF of band transmissions	Yes	Two R _{sfc} averaging methods	Manners	Edwards and Slingo (1996)
11	NASA-GISS v. D, 0.2-5.0 μm, CKD, 15 g-points	Yes	Three R _{sfc} averaging methods	Zhang, Rossow	Zhang et al. (2004)
12	COART, 0.25-4.0 μm, 26 bands, k-distribution	No	None	Jin	Jin et al. (2006)
13	CLIRAD-SW modified, 0.2 -10 µm, 8 bands, k-distribution 15 k-points	No	Two R _{sfc} averaging methods	Oreopoulos	Tarasova and Fomin (2007)

Accomplishments

- Published BAMS paper, March 2010 (intro to CIRC)
- Submitted JGR-Atmos paper, September 2011 (technical, analysis of Phase I results)
- Numerous presentations in meetings (ARM/ASR, AMS, GEWEX, etc) in addition to annual reports to IRC and GRP.
- Advocated for importance of RT evaluation within the community
- Was the impetus for the creation of a new ARM dataset (RIPBE)
- Has about a dozen "registered" members who did not formally submit in addition to participants

Some Phase I results

Longwave % errors (model-LBL)

Shortwave % errors (model-LBL)

Overall performance

Heating rate performance

Main Findings from Phase I

- LW is in OK shape, SW not so good
- SW performance is particularly poor wrt to absorbed and diffuse flux
- Band-averaging SFC albedo in the SW also creates discrepancies
- SW CO2 forcing is problematic (confirming *Collins et al. (2006)* results)
- The are discrepancies about the magnitude of LW scattering among the models that have such capability (not shown in this presentation)
- Mass-weighted rmse LW heating (cooling errors) for clear skies exceed 0.25 K/day for some models
- Accuracy vs. computational speed has not been evaluated

Potential cases for Phase II

- Also selected based on radiative closure with observations
- Can be drawn from ARM/BBHRP and/or other similar data sets
- Single-layer ice clouds
- Single layer liquid cloud (OD between Phase I Cases 6 and 7)
- Extreme dry and humid conditions
- Forcing calculations (like Phase I, Case 5)
- Spectral variations of aerosol properties
- Synthetic, but <u>not</u> pure single-gas, atmospheres

Challenges/Funding status

- CIRC has received support from DOE-BER (ARM) through PI funding to the two co-chairs
- This funding has now expired
- Future funding by DOE-BER is unlikely
- The aspects of the CIRC project requiring the most manpower:
 - choosing cases that have radiative closure at all boundaries wrt LBL calcs
 - running and validating the LBL calculations (expertise at AER)
- Co-chairs currently volunteer time
- IRC and GRP are aware of this and try to advocate for funding
 - WGCM ideas?

Recommendations to GCM community

• From IRC letter to WGCM "IRC Request for CMIP5 GCM modeling groups"

IRC's long-standing position is that accurate radiative forcing estimates due to various atmospheric constituents are an essential aspect of realistic present and future climate simulations and should be one of the main criteria for evaluating a GCM's standing among its peers ... We therefore strongly recommend that an assessment and documentation of the performance of the RT codes within CMIP5-participating GCMs against standard reference calculations and metrics are similarly undertaken.

WGCM should support and urge their membership to participate in CIRC.

- GCM groups should maintain off-line column versions of their radiation codes that are in sync with in-line version(s)
- Maintain column versions with more flexibility in receiving arbitrary atmospheric/ surface input
- Create and maintain archive of diagnostic flux calculations (i.e., without feedback) for various forcing scenarios
- Assess impact of common approximations (e.g., neglect of scattering in thermal IR, neglect of radiation interactions with precipitating particles)
- Carefully assess the trade-offs between speed and loss of accuracy (CIRC can help)