

Transpose-AMIP

Steering committee: Keith Williams (chair), David Williamson, Steve Klein, Christian Jakob, Catherine Senior

WGNE/WGCM meeting, 19/10/11

What is Transpose-AMIP?

- Basically, running climate models in NWP mode.
- Core expt for Transpose-AMIP II is to run 64 hindcasts, each 5 days long, initialised from ECMWF YOTC analysis.
- Optional expt to repeat the same set of hindcasts with NASA MERRA reanalysis or own analysis.
- The hindcasts are spread through the annual and diurnal cycles during 2008/9 and were chosen to tie in with YOTC and coincide with some of the IOPs in:
 - VOCALS (SE Pacific stratocumulus)
 - AMY (Asian monsoon)
 - T-PARC (mid-latitude Pacific)
- Any global modelling centre (NWP or climate) can submit data. Those taking part in CMIP5 should use the same model as is being used for their AMIP simulation.
- Jointly endorsed by WGNE and WGCM.

Status of Transpose-AMIP II

Status of experiments:

Met Office

	Expt pledged	Expt run	Data converted	Data on ESG
EC-Earth (Frank Selten)	\checkmark	Awaiting CMIP5 runs		
IPSL (Sandrine Bony/Solange Fermepin)	\checkmark	Technical issues		
Met Office (Keith Williams)	✓	\checkmark	~	\checkmark
Meteo France (Michel Deque)	\checkmark	\checkmark	\checkmark	Awaiting ESG upload
MIROC (Masahiro Watanabe)	\checkmark	\checkmark	\checkmark	Awaiting ESG upload
MPI (Bjorn Stevens)	\checkmark			
MRI (Tomoaki Ose)	\checkmark	Awaiting CMIP5 runs		
NCAR (David Williamson/Brian Medeiros)	\checkmark	Awaiting CMIP5 runs		

Proposed diagnostic subprojects:

- Relationship between short and long timescale model errors (PI: Shaocheng Xie)
- MJO dynamics in the Transpose-AMIP II hindcasts: (PI: Mitch Moncrieff)
- Water budget analysis (PI: Gill Martin)
- Comparison of methodologies (initial tendency using own analysis vs 5-day forecast using alien analysis) (PI: Mark Rodwell)
- Cloud regimes (PI: Keith Williams)
- Intense extratropical windstorms (PI: Peter Knippertz)
- VOCALS analysis (PI: Thomas Toniazzo)
- Comparison of current climate and NWP models (PI:TBD)
- Regional investigation into model tendencies (PI: TBD)
- 2009 SE Asian monsoon analysis (PI: TBD)

- Data formats and the process for downloading is the same as CMIP5 (select 'TAMIP2' as the project on the ESG).
- The transpose-AMIP II diagnostic lists are largely based on the CFMIP component of the CMIP5 lists (including COSP output, etc.).
 - Data will be saved globally every 3 hours and the CFMIP sites diagnostic list will be saved every 30 mins.

Example analysis: Southern Ocean surface SW bias

Coupled SST bias

Surface net SW down bias

ISCCP cloud and SW bias

SWup: MetUM minus ISCCP

HadGEM3-AO (ajrih)

Williams and Webb (2009)

Cloud regime biases apparent within first day

HadGEM2 AMIP climatology : CREMpd = 0.84Wm-2 2.5Contribution from RFO bias 2.0 Contribution from NCRF bias Wm-2 1.5 1.0 0.5 0.0 HadGEM2 transpose-AMIP D+1 : CREMpd = 0.87Wm-2 2.5Contribution from RFO bias 2.0 Contribution from NCRF bias Wm-2 1.5 1.0 0.5 0.0 Stallow Cit. Congestis FROM THIN CITUS Stellow Ci. Frontal Thin Cirris Stallow Cu AUVII CITTUS Deep Com. Stratoci. Niel-lop I PARSITION Citrus Stratoen. FORMA Thin Mid. Stratoci. Thick Nild Thin Cirrus Tropics Extra-tropics Snow/ice covered

SWtoa

Global

CERES MODIS

Boundary layer types

Met Office

I. Stable boundary layer, possibly with non-turbulent doud (no cumulus, no decoupled Sc, stable surface layer)

II. Stratocumulus over a stable surface layer (no cumulus, decoupled Sc, stable surface layer)

III. Single mixed layer, possibly cloud-topped (no cumulus, no decoupled Sc, unstable surface layer)

V. Decoupled stratocumulus over cumulus (cumulus, decoupled Sc, unstable surface layer)

VI. Cumulus-capped layer (cumulus, no decoupled Sc, unstable surface layer)

Convective or shear-driven?

Met Office

- If there is sufficient wind shear that the local BL depth (height where Ri>Ri_{crit}) **exceeds** the top of the parcel ascent:
 - Set cumulus=false
 - Non-local scheme continues only to mix to the LCL
- Motivated by cold air outbreak work:
 - Trigger when z_h(Ri) > 0.5(zh_{par}+z_{lcl}): enough shear to disrupt cumulus formation. Diagnose well-mixed layer to zh_{par}, ie completely undo cumulus diagnosis (becomes BL III)

Ctrl Atmos low cloud amount At 13Z on 31/1/2010, from 05Z on 31/1/2010 At 13Z on 31/1/2010, from 05Z on 31/1/2010

Mod BL Atmos low cloud amount

© Crown copyright Met (

Effect of BL change on surface SW bias

90N

a) Rad SW surface net down for dif AKYVK: DynDfac02

c) Rad SW surface net down for djf AKQGD: GA3.0 minus ISCCP climatology

b) Rad SW surface net down for djf AKYVK: DynDfac02 minus AKQGD: GA3.0

d) Rad SW surface net down for djf AKYVK: DynDfac02 minus ISCCP climatology

0591

⁻⁴⁵ -30-150 15 30 45

Example analysis: US warm bias

JJA Z₅₀₀ bias AMIP climatology

Forecast Z₅₀₀ bias

Met Office QG00 June 2011 GP_Height mean error 500hPa T+72

Met Office QG00 June 2011 GP_Height mean error 500hPa T+120

Precipitation diurnal Hovmoller

www.transpose-amip.info

- Transpose-AMIP II data now available to download from the ESG.
- Data from 3 models should be available imminently.
- Others should follow over the next 6 months.
- If your centre has not been listed, please consider conducting the experiment.
- Please start to analyse the data open to all for research use.

GFDL precipitation biases PPT Day3 AM2-CMAP DJF

Day 3 error

AM2-CMAP_DJF_1992-3

www.transpose-amip.info