Year of Tropical Convection (YOTC)

Major/Recent Accomplishments and Plans

Mitch Moncrieff, NCAR Duane Waliser, JPL/Caltech Co-chairs, YOTC Science Planning Group

A Contribution to Seamless Weather-Climate Prediction

WGNE, Boulder, CO; Oct 2011

Global Prediction

High-resolution analyses forecasts & physical processes data base

Integrated Observations

Satellite, field-campaign, in-situ data base

Somitzed Tropical Converse HON Tropica nvect Global Interaction

Research

Diagnostic studies of global data bases; parameterized, superparameteterized & explicit convection in regional-to-global models; theoretical studies

YOTC: PROGRESS & PLANS

- Science Plan Drafted and Discussed/Approved at Meeting in Washington DC, November 13-14, 2007. WMO Technical Document.
- Program Support/Information Specialist (Part-time): US THORPEX Exec Committee funding via U.S. NSF, NOAA, NASA.
- Web site: http://www.ucar.edu/yotc
- Implementation Plan Drafted/Discussed/Approved at IP Meeting in Honolulu, July 13-15, 2009.
- WCRP-WWRP/THORPEX MJO Task Force Est. Dec 2009 (see later slide)
- YOTC Science Sessions– Fall AGU'08, AMS'09, Spring AGU'09, Fall AGU'09, WP-AGU'10, AGU of Americas'10, Fall AGU'10, Fall AGU'11.
- MJO TF Meeting and MJO Workshop, Busan, June 2010.
- YOTC+AMY Science Symposium, CMA/Beijing, China, May 2011.
- Data Sets: High-Res ECMWF Analysis & Satellite Archive/Tools
- Model and Analysis Activities: T-AMIP, ISVHE, MJO TF/GCSS-Diabatic, etc
- BAMS Synoptic Overview (in press), BAMS Science Motivation (in review), BAMS Meeting Summary (submitted).

M. Wheeler

a) b)	c) d)				
01- 30- 15- May Jun Aug 2008	01- 01- 28- 01- 31- Nov Jan Feb Apr May 2009				
Target Periods (priority)	Features				
a) 01MAY2008 - 30JUN2008 (4)	 fast propagation of MJO into Bay of Benga caused strong modulation of eastern Pacific embedded TCs. 				
b) 15AUG2008 - 01NOV2008 (5)	- MJO convective onset (in central IO) suppressed period in mid-Sept, the second Ocean occurred around Oct 12.				
c) 01JAN2009 - 28FEB2009 (3)	 Weak sequence of the MJO that started w IO from about 10-20 Jan. MJO convection onset then followed i propagating into N Australia in early Feb; Australia; strong compensating descent to s temperature in NSW/Victoria that affected t cyclones, i.e., association with severe weath 				
d) 01APR2009 - 31MAY2009 (2) - strongest MJO in the YOTC period confined to Indian Ocean and Tropical propagation; convectively coupled Kelv westerly anomalies in Pacific; basin-wid for MJO between La Nina and El Nino; M					
e) 200CT2009 - 20DEC2009 (1)	 strong MJO onset in Indian ocean; propaga El Nino conditions; effects on N-hemispheri climate. 				
f) 20DEC200 - 20FEB2009 (1) - strong MJO onset in Indian Ocean; propag southward in mid-Pacific region.					

Real-time MJO filtering superimposed upon 7drm R21 OLR Anomalies MJO anomalies blue contours, CINT=10. (5. for forecast) Negative contours solid, positive dashed 25-May-2008 to 11-May-2010 + 14 days Jun \mathbf{Jul} Aug 1 Sep 1 Oct 1 Nov 1 Dec 1 Jan Feb Mar Apr : May Jun Jul 1 Aug 1 Sep 1 Oct 1 Nov 1 Dec : Jan : Feb 1 Mar 1 Арг 1 May fcs 80°E 120°E 160°E 160°W 120°W ao°₩ 40°₩ 40°E Obs; W m⁻⁸ _90 -70 -50 -50 -10 10 30 50 70 7.5S - 7.5NMJO Fest; ₩ m⁻² +5 +10 BMRC Climate Forecastin 10

MJO & CCEWs

Case Studies for MJO TF & GCSS Diabatic Heating Expt

YOTC: ANALYSES, FORECASTS & SPECIAL DIAGNOSTICS

 High-resolution, global analysis and forecast data sets are being made available to the community from ECMWF, NCEP and GMAO/NASA. e.g. T799 = 25km ECMWF + diagnostic fields (as of Jan'10, T1279 = 16kms)

CECMME	Home Your Room Login Contact Feedback Site Map Search:	VOTC Data Server
Th and wind	About Us Products Services Research Publications News&Events Overview Forecasts Computing Modelling Newsletters Calendar Getting here Order Data Archive Reanarysis Manuals Employment Committees Order Software PrepIFS Seasonal Library Open Tenders	70 T
	YOTC Data Retrieval> YOTC Data Retrieval	118 Tbytes Delivered
Type Analysis Forecast	Note: In order to retrieve data from this server, you first have to accept the conditions of use.	⁶⁰ As of September 201
ype of level Model levels Pressure levels Surface	Select date • Select a date range between 2008-05-01 and 2008-07-20: Start date: 2008-05-01 End date: 2008-07-20	50
Datasets ERA-Interim YOTC	Select a list of month: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2008	
ENSEMBLES Daily Fields Monthly Fields	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Des Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Des Seinst All or Greet	30 N
Personal	Select Time	
<u>Your Requests</u> Data usage	0:00:00 06:00:00 12:00:00 18:00:00	20 — Total # of Different Users per Month
Conditions	Select parameters	
See also GRIB decoder Other datasets Data Services	1000 950 925 900 950 800 700 600 500 400 300 250 200 150 100 70 50 30 20 10 7 \$ 3 2 1 Divergence Coopensas Mixing and Potential	Image: Construction of the state o

NEW: ECMWF-YOTC Replicated at NCAR.

YOTC: SATELLITE DATA

- Key satellite data (e.g., NASA A-Train, TRMM) have been identified and funding secured from NASA for the:
 - NASA Giovanni-based dissemination framework.
 - NEW Multi-sensor CloudSat-Centric A-Train Data Set archive & dissemination underway at CloudSat Data

Transpose AMIP CMIP5 Model Evaluations

•4 periods; 16 5-day hindcasts in each

•9 proposed subprojects – e.g. Cloud Regimes, Wiliams; MJO, Moncrieff.

Modeling Group Pledges

EC-Earth (Frank Selten)
IPSL (Sandrine Bony)
Met Office (Keith Williams)
Meteo France (Michel Deque)
MIROC (Masahide Kimoto)
MPI (Bjorn Stevens)
MRI (Masahide Kimoto)
NCAR (David Williamson)

hadobs.metoffice.com/tamip

Other T-AMIP EUCLIPS/Siebesma

YOTC Period

Transpose AMIP – CAPT/DOE Utilizing YOTC Period/ECMWF Analysis

MJO TF, YOTC & GEWEX GASS Diabatic Heating MJO Exp

Addressed Later

YOTC One Approach to Advancing our Understanding and Forecasting Capabilities of Tropical Convection CECMWF About Us Services Research Products Publications **Motivation New Observations** vpe of leve art date: 2008 05 1 ERA-Int 00:00:00 - 06:00:00 **Global Prediction Integrated Observations** High-resolution operational Satellite, field-campaign, in-situ 1000 950 925 900 deterministic-model data sets data sets ed Tropical Co Specific **Events of Interest** obal Interactio Research Attribution studies of global data sets; parameterized superparameterized, and explicit convection in regional-to-global models; theoretical studie Models & Tools Thank You Relative Humidity [%] Waliser et al. 2011; BAMS, Under Review

An Update on MJO Task Force Activities and Plans

Duane Waliser JPL/Caltech/USA Matthew Wheeler ABOM/Australia

MJO Task Force : Background

- Established in early 2010.
- Sponsor: WCRP-WWRP/THORPEX under their YOTC Project
- Follow on from the US CLIVAR MJO Working Group
- Website: www.ucar.edu/yotc/mjo.html

7	Duane Waliser (co-chair)	Jet Propulsion Laboratory/Caltech
1	Matthew Wheeler (co-chair)	Centre for Australian Weather and Climate Research
١.	Ken Sperber	Program for Climate Model Diagnostics and Intercomparison
	Harry Hendon	Centre for Australian Weather and Climate Research
	Eric Maloney	Colorado State University
	Xiouhua Fu	University of Hawaii
	John Gottschalck	National Centers for Environmental Prediction
	Richard Neale	National Center for Atmospheric Research
	Chidong Zhang	University of Miami
	Daehyun Kim	Lamont-Doherty Earth Observatory of Columbia University
	Augustin Vintzileos	National Centers for Environmental Prediction
	Frederic Vitart	European Centre for Medium-range Weather Forecasting
	Dave Raymond	New Mexico Institute of Mining & Technology
	Masaki Satoh	Frontier Research Center for Global Change
	Hai Lin	Environment Canada
	Prince Xavier	UK Met Office

Overall Goal: Facilitate improvements in the representation of the MJO in weather and climate models in order increase the predictive skill of the MJO and related weather and climate phenomena.

CLIVAR MJO WG Item I : MJO Simulation Diagnostics for GCMs

(MJOWG, J. Climate, 2009)

Web Display and Code Availability

Adopted by NCAR/NCL

www.usclivar.org/mjo.php

CLIVAR MJO WG Item II : Application of Diagnostics to GCMs (Kim et al. J. Climate, 2009)

Model (group)	Horizontal Resolution -AGCM	Vertical Resolution (top level) -AGCM	Cumulus parameterizatio n	Integration	Reference
CAM3.5 (NCAR)	1.9° lat x 2 .5° lon	26 (2.2hPa)	Mass flux (Zhang and McFarlane 19 95)	20 years 01JAN1986- 31DEC2005	Neale et al. (2007)
CAM3z (SIO)	T42(2.8°)	26 (2.2hPa)	Mass flux (Zhang and McFarlane 19 95)	15 years 29JAN1980- 23JUL1995	Zhang et al. (2005)
CFS (NCEP)	T62(1.8°)	64 (0.2hPa)	Mass flux (Hong and Pan 1998)	20 years	Wang et al. (2 005)
CM2.1 (GFDL)	2º lat x 2.5º lon	24 (4.5hPa)	Mass flux (RAS; Moorthi and Suarez 1992)	20 years	Delworth et al . (2006)
ECHAM4 /OPYC* (PCMDI)	T42(2.8°)	19 (10hPa)	Mass flux (Tiedtke 1989, adjustmen t closure Nordeng 1994)	20 years	Roeckner et a l. (1996), Sperber et al. (2005)
GEOS5 (NASA)	1° lat x 1.2 5° lon	72 (0.01hPa)♪	Mass flux (RAS; Moorthi and Suarez 1992)	12 years 01DEC1993- 30NOV2005	To be docume nted
SNUAGCM (SNU)	T42(2.8°)	20 (10hPa)	Mass flux (Numaguti et al. 1995)	20 years 01JAN1986- 31DEC2005	Lee et al. (20 03)
SPCAM (CSU)	T42(2.8°)	26 (3.5hPa)	Superparameterization (Khairoutdinov and Randall 2003)	19 years 010CT1985- 25SEP2005	Khairoutdinov et al. (2005)

Applied to 8 GCMs CAM3.5, CAM-3Z, SPCAM, ECHAM4/OPYC, CFS, SNU, GFDL, GEOS5 CMMAP – MMF (uncoupled) ECHAM4/OPYC (coupled) Performed best. Still Challenges

CLIVAR MJO WG Item III: Operational MJO Forecast Metric

(Gottschalck et al. BAMS, 2010)

Use of a common metric allows for:

- quantitative forecast skill assessment.
- targeted model improvements.
- friendly competition to motivate improvements.
- developing a multi-model ensemble forecast.

http://www.cpc.ncep.noaa.gov/products/precip/CWlink/MJO/CLIVAR/clivar_wh.shtml

CLIVAR MJO WG Item IV: MJO Workshops

I. MJOWG Sponsored, Irvine, CA 2007

New Approaches to Understanding, Simulating, and Forecasting the Madden-Julian Oscillation

Sperber and Waliser BAMS Meeting Summary 2008

II. MJOTF + CLIVAR AAMP, Busan, 2010

Monsoon Intraseasonal Variability Modeling Workshop

Hendon, Sperber, Waliser and Wheeler BAMS Meeting Summary 2011

MJO TF Focus Areas

Organized into 4 Subprojects (leverage MJO WG activities)

- Process-oriented MJO diagnostics/metrics (leads: D. Kim, P. Xavier, E. Maloney)
- Boreal summer monsoon ISV forecasting metrics (leads: J.-Y. Lee, M. Wheeler, J. Gottschalck)
- Recommend MJO metric(s) to Climate Metrics Panel (leads: K. Sperber, H. Hendon)
- MJO TF + GASS Multi-Model Diabatic Processes Experiment (leads: D. Waliser, X. Jiang, J. Petch, P. Xavier, S. Woolnough, N. Klingaman)

Under consideration: Modulation of Tropical Cyclones activity by the MJO/ISV in order to improve their prediction.

MJO TF Subproject: Process-Oriented MJO Diagnostics

Exploring Diagnostics/Metrics that provide more insight into why a model may have a good/poor MJO.
Provide more guidance to model development activities

MJO TF Subproject: Process-Oriented MJO Diagnostics

MJO TF Subproject: Metrics for WGNE/WGCM Climate Metrics Panel

Offering guidance on <u>simple</u> MJO performance metrics for assessing CMIP models.

- east = sum of spectral power within box A (wavenumber 1-3, period 30-70 days)
- east/west = (sum of spectral power
 within box A)/(sum of spectral power
 within box B)
- (east/west)*east

MJOWG et al. 2008 Kim et al 2009

MJO TF Subproject: Metric/Diagnostic Goals

Combine performance metrics (x-axis) and process diagnostic (y-axis) to provide pathways to understanding and improving MJO model performance.

MJO TF Subproject: Boreal Summer ISV Forecast Metric

An metric tailored for boreal summer ISV operational monitoring and forecasting applications.

http://iprc.soest.hawaii.edu/users/jylee/miso/miso.htm

ISVHE

Intraseasonal Variability Hindcast Experiment

Designed for MJO & other ISV Prediction & Predictability Analysis

Contacts: Bin Wang & June-Yi Lee

Programmatic & Funding Sponsors APCC, YOTC/MJOTF, AMY, NOAA CTB

- 20-Year Climatological Simulations.
- 45-day hindcasts at least 3 times per month for 20 years with at least 5 membere ensembles.

At least 19 modeling groups with about 10 having submitted data.

C	ONE-TIER SYSTEM						
		Martal	Control		IS	O Hindcast	
		Model		Period	Ens No	Initial Condition	
	ABOM	POAMA 1.5 (ACOM2+BAM3)	CMIP	1980-2006	10	The first day of every month	
	APCC (not collected)	CCSM3	CMIP (20yrs)	1981-2008		The first day of every month	
	CMCC	CMCC (ECHAM5+OPA8.2)	CMIP (20yrs)	1989-2008	5	Every 10 days	
	ECMWF	ECMWF (IFS+HOPE)	CMIP(11yrs)	1989-2008	15	The 15th day of every month	
	GFDL CM2 (AM2/LM2+MOM 4) CMIP 1982-2008 10 The first day of even		The first day of every month				
	JMA	JMA CGCM	CMIP (20yrs)	1989-2008	6	Every 15 days	
	NCEP/CPC	CFS (GFS+MOM3)	CMIP (100yrs)	1981-2008	5	Every 10 days	
	PNU (not collected)	CFS with RAS scheme	CMIP (13yrs)	1981-2008	3	Every 10 days	
	SNU SNU CM (SNUAGCM+MOM3)		CMIP (20yrs)	1989-2008	1	Every 10 days	
UH/IPRC UH CM (ECHAM4+IOM) CMIP		CMIP	1989-2008	6	Every 10 days during MJJAS		
	TWO TIED SYSTEM						
			Control		ISO Hindcast		
	Model	Run	Period	Ens No	Initial Condition		
	CWB	CWB AGCM	AMIP (25yrs)	1981-2005	10	Every 10 days	
	MRD/EC	GEM	AMIP (21yrs)	1985-2008	10	Every 10 days	
	NASA/GMAO (not collected)	NSIPP	AMIP	1989-2008	10	Every day	

Jon Petch (Met Office), Duane Waliser (JPL) Xianan Jiang (JPL/Caltech), Prince Xavier (Met Office) Nick Klingaman & Steve Woolnough (NCAS - Climate)

Observational products and reanalysis are starting to give estimates of vertical diabatic heating but what do the models look like? Are the observations good enough?

Jiang et al. 2011

Specific objectives of the model inter-comparison are to characterise the diabatic heating and moistening profiles associated with the MJO in climate models and consider:

- the contributions of the models physical parametrizations
- the evolution as a function of forecast lead time

 the utility of the satellite and reanalysis products in evaluating model simulations of the MJO

- **1. climate simulation** multi-year simulations coupled or atmosphere only
- **2. short range hindcasts** daily 48hr forecasts during ~20 days of the MJO
- **3. medium range hindcasts** 20 day initialized forecasts

www.ucar.edu/yotc/mjodiab.html

	Model Experiment	Science Focus	Exp. POC
1.	20 Yr Climatological Simulations (1991-2010 if AGCM) 6-hr, Global Output Vertical Structure, Physical Tendencies	Model MJO Fidelity Vertical structure Multi-scale Interactions: (e.g., TCs, Monsoon, ENSO)	UCLA/JPL X. Jiang D. Waliser
11.	2-Day MJO Hindcasts YOTC MJO Cases E & F (winter 2009)* Time Step, Indo-Pacific Domain Output Very Detailed Physical/Model Processes	Heat and moisture budgets Model Physics Evaluation (e.g. Convection/Cloud/BL) Short range Degradation	Met Office P. Xavier J. Petch
111.	20-Day MJO Hindcasts YOTC MJO Cases E & F (winter 2009)* 3-hr, Global Output Elements of I & II	MJO Forecast Skill State Evolution/Degradation Elements of I & II	NCAS/Walker in. N. Klingaman S. Woolnough
÷	DYNAMO Case TBD Commitme	ents: About 20 Modeling Groups with AG	CM and/or CGCM

National Centre for Atmospheric Science

Likely Participants (So Far)

Integrations Due Win/Spr 2012

First Results Discussion & Presentation

Pan-GASS Mtg Fall 2012

	POC		Experiment			
Model		Institution	Climatological simulation	Short-term Hindcast	Long-tern Hindcast	
CEOS E ACCHA	Siegfried Schubert	NASA	v	x	x	
GEUS-5 AGCIVI	Hailan Wang	NASA/GMAO	^			
IDDC CCM	Xiouhua Fu	University of Hawaii	Y	Y		
IPRC GCM	Baoqiang Xiang	University of Hawaii	waii		×	
	David Randall	Colorado State University		x	x	
SPCAM	Charlotte Demott	Colorado State University	X			
	Mike Pritchard (UW)	UCSD	10.11 AV			
	Daehyun Kim	LDEO	v	v	~	
NASA GISS	Anthony Del Genio	LDEO	^	~	X	
GEM model	Hai Lin	Environment Canada	X	X	X	
	Masaki Satoh	AORI, Univ. of Tokyo				
NICAM	Tomoe Nasuno	JAMSTEC		X	x	
SINTEX	Jingjia Luo	JAMSTEC				
	Jean-Philippe Duvel	LMD, Paris			-	
LMDZ	Sandrine Bony	LMD, Paris	X	-		
	Eiki SHINDO	MRI		x	x	
MRI-GCM	Akio Kitoh	MRI	X			
	Mong-Ming LU	CWB, Taiwan		x	x	
CWB AGCM	Hsin-Hsing CHIA	CWB, Taiwan	X			
	Hsiao-Chung TSAI	CWB, Taiwan				
WRF	Samson M Hagos	PNNL	X	X	X	
	David Straus	COLA and GMU				
CCSM4	Ben Kirtman	University of Miami				
	Joe Tribbia	NCAR				
	Kyong-Hwan Seo	PNU, Korea		32	1.20	
CFS T62L60	Sooraj K P	PNU, Korea	X	X	X	
IFS	Frederic Vitart	ECMWF	(m)	X	X	
ECHAM	Traute Crueger	ZMAW	X	120	2	
MetUM GA3.0	Prince Xavier	Met Office UK	X	X	X	
INGV	Silvio Gualdi	СМСС				
HIRAM	Ming Zhao	GFDL	X	x	X	
CCSM4, CESM1	Rich Neale	NCAR	X	x	X	
	Jim Ridout	NRL				
NAVGEM	Young-Joon Kim	NRL	x	x	x	
	Maria Flatau	NRL	0.1070			
AM3/CM3	Bill Stern	GFDL	X	-	-	
CAM3/CAM5	Guang Zhang	UCSD	X	(<u>1</u>))	<u> </u>	
Global WRF	Zhiming Kuang	University of Harvard		-	X	
SPCAM	Zhiming Kuang	University of Harvard	-	5 . 88	X	
CFSv2	Wangiu Wang	NCEP/CPC	X		-	