## **WGSIP**

- Seasonal/CHFP
  - GLACE-2
  - Strat-HFP
  - Sea-Ice HFP
  - US NMME
- Decadal
- Sub-Seasonal



### **Participating Groups**

- 1. EU ENSEMBLES (Linked Server)
- 2. UKMET (CIMA)
- 3. APCC (Linked Server)
- 4. NOAA-NCEP
- 5. NOAA-GFDL
- 6. NASA-GMAO (Jan 2012)
- 7. COLA-UMiami-NCAR (September 2011)
- 8. BMRC
- 9. JMA (CIMA)
- 10. CCCma (CIMA)
- 11. CPTEC
- **12.** IRI



#### **Completed**

**Hindcasts Done, Data Transfer Pending** 

**Hindcasts Nearly Completed** 

**Black – Status Pending** 



http://chfps.cima.fcen.uba.ar/
CIMA CHFP Data Server

# CHFP: Three major topics and (now) three experiments:

**Land Surface: the GLACE experiment:** 

Soil moisture experiments in seasonal mode

Led by R Koster

Stratosphere: Stratospheric Historical Forecast Project

**High Top – Low Top hindcasts** 

Led by A Scaife

Sea Ice: Ice Historical Forecast Project

Case studies with/without initial sea-ice data (2007/1996)

Led by D Peterson

## GLACE-2: An international project aimed at quantifying soil moisture impacts on prediction skill



## GLACE-2: An international project aimed at quantifying soil moisture impacts on prediction skill

- 1. The individual models vary in their ability to extract forecast skill from land initialization (not shown). In general,
  - -- Low skill for precipitation
  - -- Moderate skill (in places) for temperature, even out to two months.
- 2. Land initialization impacts on skill increase dramatically when conditioned on the size of the initial local soil moisture anomaly.



If you know the local soil moisture anomaly at time 0 is large, you can expect (in places) that initializing the land correctly will improve your temperature forecast significantly, and your precipitation forecast slightly, even out to 2 months.

3. The results highlight the potential usefulness of improved observational networks for prediction.

## Ice HFP – experiment & first results

Initial focus on 1996 and 2007

Six month forecasts from May, August and November

With Sea-Ice initialised and evolving

Without Sea-Ice initialised and evolving

Data NOT to be on the server



Figure 1: a) Regression of observed (NSIDC) October sea ice extent onto winter (DJF) SLP from ERA-I for the years 1996 through 2009 (winter of 1996/7 through 2009/10). The sign of the sea ice extent has been flipped, so the regression represents the SLP associated with low sea ice. Winter (DJF) mean SLP difference between winter 2007/8 and 1996/7 b) in ERA-I analysis, and c) GloSea4 forecast (November start date) with initialized ice. d) The contribution to c) due to the initialized ice, obtained by taking the difference between the 2007/8 minus 1996/7 difference seen in c) and subtracting a similar 2007/8 minus 1996/7 SLP difference in a run where both years have been initialized with an ice climatology. Contour intervals for solid black lines are a) 4, b/c/d) 1 hPa.

© Crown copyright Met Office

## **Participants and Status**

| <u>Institute</u>      | <u>Model</u>      | <u>Status</u> | Contact                        |
|-----------------------|-------------------|---------------|--------------------------------|
| Met<br>Office HC      | HadGEM            | DONE          | drew.peterson@metoffice.gov.uk |
| Meteo<br>France       | Arpege +<br>OPA?  | DONE          | matthieu.chevallier@meteo.fr   |
| ECMWF                 | IFS+NEMO          | ?             | Linus.Magnusson@ecmwf.int      |
| Max<br>Planck<br>Inst | ECHAM5 +<br>MPIOM | DONE          | dirk.notz@zmaw.de              |

Other groups to take part? contact drew.peterson@metoffice.gov.uk

## Stratospheric extension of the CHFP

#### **Hi Top Hindcasts**

- Parallel to WGSIP-CHFP
- Extended models
- Initialising extra atmosphere, better represented stratosphere

#### Integrations

- 4 month lead times (1<sup>st</sup> November and 1st May start dates)
- 2 seasons (DJF and JJA)
- Case study years: 1989 onwards
- At least 6 members per year, preferably more

## **Participants and Status**

| <u>Institute</u> | <u>Model</u>        | Resolution                     | Reference                                                                      | <u>Status</u>     | Contact                                                  |
|------------------|---------------------|--------------------------------|--------------------------------------------------------------------------------|-------------------|----------------------------------------------------------|
| Met<br>Office HC | HadGEM              | N96L85, 85km<br>N96L38, 40km   | Martin et al 2006, J.<br>Clim., 19, 1217-1301                                  | DONE<br>IN SERVER | Adam.scaife@metoffice.gov.uk                             |
| Meteo<br>France  | Arpege 4.4 +<br>OPA | L91, 0.01hPa<br>L31, 10hPa     | Gueremy et al, 2005,<br>Tellus, 57A, p308-319                                  | DONE<br>IN SERVER | Michel.deque@meteo.fr jean.philippe.piedelievre@meteo.fr |
| ECMWF            | IFS                 | L91, 0.01hPa<br>L62, 5hPa      |                                                                                |                   | t.stockdale@ecmwf.int                                    |
| CCCMA            | CMAM                | T63L71,~100km<br>T63L41,~31km  | Scinocca et al 2008,<br>ACP, 8, 7055-7074                                      | DONE<br>IN SERVER | John.Scinocca@ac.gc.ca  George.Boer@ec.gc.ca             |
| NCEP             | CFS v1              | L64, 0.2hPa                    | Saha et al, J.Clim.,<br>vol.19, no.15,<br>p3483-3517                           |                   | Amy.Butler@noaa.gov  Arun.Kumar@noaa.gov                 |
| CPTEC            | CPTEC               |                                |                                                                                |                   | pnobre@cptec.inpe.br                                     |
| IFM-<br>GEOMAR   | ECHAM5              | T63L31,10hPa<br>T63L47,0.01hPa | Roeckner et al 2003,<br>MPI report No. 349,<br>127pp<br>Manzini et al 2006, J. |                   | nkeenlyside@ifm-geomar.de                                |

#### **US National Multi-Model Ensemble Hindcasts and Real-time Prediction**

| Model        | Period    | Members | Leads      | Arrangement of Members                       |
|--------------|-----------|---------|------------|----------------------------------------------|
| CFSv1        | 1981-2009 | 15      | 0-8 months | 1st 0Z +/-2days, 21st0Z+/-2d,<br>11th0Z+/-2d |
| CFSv2        | 1982-2009 | 24(28)  | 0-9        | 4 members (0,6,12,18Z) every<br>5th day      |
| GFDL-CM2.2   | 1982-2010 | 10      | 0-11       | All 1st of the month 0Z                      |
| IRI-Echam4-f | 1982-2010 | 12      | 0-7        | All 1st of the month                         |
| IRI-Echam4-a | 1982-2010 | 12      | 0-7        | All 1st of the month                         |
| CCSM3.0      | 1982-2010 | 6       | 0-11       | All 1st of the month                         |

http://origin.cpc.ncep.noaa.gov/products/people/wd51yf/NMME/

**IRI to Host Hindcasts and Real-Time Forecasts (Minimal Data Set)** 

## Sea Surface Temperature

Verification observation:

- SST OISST-QD
- 1982-2009





#### **Decadal Predictions**

**CMIP5** Protocol



- CMIP-WGCM-WGSIP group to oversee this framework
- WGSIP is active participant in upcoming CLIVAR AIP workshop on ocean initialization for decadal predictions

### Active meeting and workshop schedule

- OceanObs09 (Venice, Sept 09)
- 8<sup>th</sup> Workshop on Decadal Climate Variability (Maryland, Oct 09)
- Earth-System Initialization for Decadal Prediction (deBilt, Nov 09)
- Predicting Climate of the Coming Decades (Miami, Jan 10)
- o WGSIP-13 (Buenos Aires, July 10)

-----

- Conference on Decadal Predictability (Triest, Aug, 10)
- Workshop on Decadal Variability, Predictability and Predictions: understanding the role of the oceans (NCAR, Sept 10)
- o WGCM-14 (Exeter, Oct 10)
- Seasonal to Multi-decadal Predictability of the Polar Climate (Bergen, Oct 10)
- o IPCC 1<sup>st</sup> LA Meeting (Kunming, Nov 10)
- Making sense of the multi-model prediction experiments from CMIP5 (Aspen, June 11)
- o IPCC 2<sup>nd</sup> LA Meeting (Brest, July 11)
- o WGSIP-14 (Trieste, Sept 11)

## **Decadal Forecast Exchange**

We are exchanging very basic quantities:

Global Annual Mean Temperature

One file for each year, each member

Exchanged once per year around November

#### Equal ownership

Hadley: 2012-2016

SN

SMHI: 2012-2016



MRI: 2012-2016



-1.5 - 1 - 0.5 0 0.5 1 1.5

MIROC5: 2012-2016

Average forecast



Average - AR4



#### **Links across WMO**



TIGGE Representation (P. Silva Dias) at WGSIP-13 Several Area of Potential Collaboration Identified

- Ocean-atmosphere coupling impact sub-seasonal forecast skill
- Role of resolution on forecast skill
- Scale interactions
- Ensemble techniques

