The Bone and The Marrow: Some Suggestions for the Future of Climate Prediction

Francisco Doblas-Reyes

R. Bernardello, R. Bilbao, A. Carreric, J. Cos, C. Delgado, M. Donat, N. Milders, B. Solaraju Murali, V. Torralba, E. Tourigny

28 March 2023
Outline: a collection of thoughts

Understanding the title:
• the bone and the marrow as a set of key elements for lie
• chill to the marrow/to the bone

What we can do:
• with what we have
• with what climate change colleagues are doing
• with what other domains are doing
What else we can do with what we have: Transparency, standards, guidance, user engagement
Non-trivial climatology definitions

Weekly: too noisy

Monthly: good skill, but suspiciously high ...

Monthly running window, but weekly for the bias adjustment: lower skill, and too noisy for the adjustment

Monthly running window: more credible quality estimates

Manrique-Suñén et al. (2020, MWR; 2023, CliSer)
Systematic forecast quality assessment

Impact of cross-validation

N. Milders (BSC)
Observational uncertainty

Verification against several reanalysis-based references gives different results. Adjustment of the observational references to in-situ observations (HadISD) shows that this uncertainty can be reduced. 10 m wind speed, BSS90 for zero-month lead one-month forecasts from ECMWF S5 (1981-2017).

“Failing to account for the effects of observation error when deciding between two forecasting systems could lead to the wrong choice and a high opportunity cost” (Ferro, 2017)

Ramon et al. (in preparation)
Building multi-model systems

Systematic assessment of the multi-model decadal prediction forecast quality helps illustrating, among other things, the importance of a large enough operational multi-model.

Comparison between a research (DCPP, 169 members, 13 forecast systems) and an operational (C3S_34c, 40 members, 4 forecast systems, CMCC-CM2-SR5, EC-Earth3-i1, HadGEM3-GC3.1-MM and MPI-ESM1.2-HR).
Where to from here? User requirements

Downscaled SPEI3 (October to December) multi-model (three models) predictions for 2022-2026 over Tanzania to support agricultural decisions for maize. ERA5Land used as reference.

C. Delgado-Torres (BSC)
Volcanic influence

Results from the Decadal Prediction Volcanic Response Readiness Exercise (VolRes-RE). A 2xEl Chichón eruption is set in April 2022 for the decadal forecast started in late 2021 and the difference with respect to DCPP-A made.
What we can do with what happens around us: Seamless information, more realistic models, carbon cycle
Near-term seamless climate information

Projections: **223 members** from 35 models
Decadal predictions: **93 members** from 9 models
Sub-selecting the 30 projections members in closest agreement with the predictions over years 1-9
→ There is substantial multi-decadal predictability by aligning internal variability
→ Skill in constrained projections can be larger than in decadal predictions used to constrain

Mahmood et al. (2021, GRL; 2022, ESD)
Near-term seamless climate information

Skill of 20-year projections using five constraining methods over the period 1970-2000

• Heterogeneity between methods
• It’s fundamental to evaluate the constraining methods before claiming improvements in regional climate projections

Cos et al. (in prep.)
New generation of climate models: resolution

Eddy-rich, storm-resolving models (10-km or higher resolution) simulate a decrease in SST biases over the North Atlantic (right) and a northward shift in the Gulf Stream over the XXI Century that leads to rainfall increases in Europe (left), not found with traditional low-resolution models.
Carbon cycle predictions

Global atmospheric CO2 growth rate predictions from EC-Earth3-CC. Initial conditions are obtained from off-line simulations.

There is skill up to two years. It then decreases mainly due to the land-atmosphere flux.
What gives the chill:
Lack of interactivity, emergence of AI-based solutions
This can only work if the user is offered true **interactivity** with the data sources.
Tethering: A necessary condition for interactivity

One of the ML-based weather forecast models (e.g., FourCastNet) could be trained on the trajectories of a (preferably several) process-based climate model (with high-frequency output). The tethering concept allows, using the climate model restarts, to recreate almost instantly (in inference mode as an interpolation between restarts) the model output requested by any user leading for true interactivity.

• The ML-based model can provide downscaled (super-resolution), targeted (user indicators), and bias adjusted data with large ensembles (if uncertainty handling is trustworthy).

• The physical model is a guarantee that there is a possibility to generate wildcards, i.e., unprecedented events plausible in a changing climate.
User interface to climate information

How long before a generative chatbot will be trained with the latest forecast information?

As an AI language model, I do not have access to real-time weather data beyond my knowledge cut-off date of September 2021. The prediction of El Niño in October 2023 is highly uncertain and depends on many complex changes in ocean temperatures and atmospheric patterns.

El Niño events typically occur every 2-7 years, but their frequency and intensity vary widely. However, based on historical records and current climate models, meteorologists and climate scientists may make predictions about future events.

The probability of lower than normal maize crop yield in Tanzania in the period 2023-2027 is difficult to predict with certainty as it depends on various factors, including weather conditions, pests and diseases, availability of inputs such as seeds and fertilizers, and socio-economic factors such as market prices and government policies.

However, there are several factors that could potentially affect maize crop yields in Tanzania. For instance, climate change could lead to unpredictable weather patterns, which could negatively impact crop yields. Additionally, pests and diseases could also affect crop yields if they are not effectively controlled.

GPT-4’s capabilities and limitations create significant and novel safety challenges, and we believe careful study of these challenges is an important area of research given the potential societal impact. This report includes an extensive system card (after the Appendix) describing some of the risks we foresee around bias, disinformation, over-reliance, privacy, cybersecurity, proliferation, and more. It also describes interventions we made to mitigate potential harms from the deployment of GPT-4, including adversarial testing with domain experts, and a model-assisted safety pipeline.

Particularly vulnerable to crop failure and food insecurity, and efforts to support sustainable agricultural practices and increase resilience to climate change are essential to ensure food security and livelihoods.
A collection of thoughts

Understanding the title:
• the bone and the marrow as a set of key elements for lie
• chill to the marrow/to the bone

What we can do
• with what we have
• with what climate change colleagues are doing
• with what other domains are doing