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Deep learning is becoming competitive with dynamical seasonal
forecast systems

Skill in predicting October-March average precipitation initialized from July

Observational period 1982-2012
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Which map is from NOAA’s North American Multi-Model Ensemble (NMME),
and which is from deep learning of climate models?
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This presentation provides an overview of our recent JAMES paper
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Our JAMES paper was motivated by a project to improve
seasonal predictions of water resources in California

Persistent climate patterns steer storms
toward or away from California.
E.g., the “Ridiculously Resilient Ridge”

Western US March Snowpack
‘.\n”x-‘\\l Depth a

Observational Data

Can deep learning exploit low frequency
signals in the climate system to improve

seasonal predictions?

Climate Simulations
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Two recent papers suggested deep learning applied to climate

simulations may be useful

Geophysical Research Letters

RESEARCH LETTER  Diagnosing Secular Variations in Retrospective ENSO
1010201201 8GLO%0558 Seasonal Forecast Skill Using CMIP5 Model-Analogs

Key Points:
« Seasonal tropical Indo-Pacific

Step 1: Search from existing cliamte simulations whose SST is close to observed SST
Step 2: Apply their following season's states as analog forecasts

Anomaly correlation
(b) NMME-model analog (precip)
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(d) CMIPS best-10 analog (precip)
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Two recent papers suggested deep learning applied to climate
simulations may be useful

Letter | Published: 18 September 2019

Deep learning for multi-year ENSO forecasts

Yoo-Geun Ham &, Jeong-Hwan Kim & Jing-Jia Luo

Nature 573, 568-572(2019) | Cite this article

Step 1: Take predictor-predictand pairs from climate simulations.
Step 2: Build a convolutional neural network regression model.
Step 3: Apply few observations for fine—tuning.

Step 4: Apply the fine-tuned model for forecast.
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Deep learning (DL) is a promising approach to help improve

climate predictions

@Deep neural networks can discover patterns or
“features” automatically that humans cannot

®Can keep memory effects and rich spatial structure

®0bservational data can be used more effectively
(“data-driven” approach)

®Can fully leverage pre-existing data
®0ffers huge speed up in time and resources

®Complements traditional methods
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Probabilistic approaches are required for seasonal forecasts

Model

structural
errors J

Initialization
errors

\

Ensemble .
Initial size

Conditions

>

Forecast time
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Dynamical forecasts

Initialize from different states

Incorporate multiple models

Limited sample size due to computational
costs

Deep learning forecasts

Initialize at different points in continuous
runs to learn seasonal dependencies
Train on multiple climate models

Use generative/variational methods to
represent distributions
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We developed the Conditional Generative Forecasting (CGF)

system for seasonal forecasts

CGF is built using

Convolutional neural networks (CNNs)
* From computer vision
e Designed for maps and images

Autoencoders / U-Nets

* Effective at extracting low-dimensional patterns and features
* Non-linear generalization of Empirical Orthogonal Functions

Conditional variational methods

e Approximate probability distribution function (PDF) of the
input / output data

* Enable drawing plausible samples from the PDF

Predictand (Y)
Precipitation/2m temperature

Inputs: maps of ocean heat contentin  Outputs: maps of Oct-March average

July (8 layers, 5-100 m) precipitation or air temperature
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Autoencoders are related to Empirical Orthogonal Functions

Empirical Orthogonal Functions

and Statistical Weather Prediction

- by
EDWARD N. LORENZ
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

DEPARTMENT OF METEOROLOGY
Cambridge, Massachusetts

DECEMBER 1956

* EOFs are a technique used for
extracting spatial and
spatiotemporal patterns.

* EOFs are also known as Principal
Component Analysis (PCA)
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Consider a set of monthly mean
sea level pressure (SLP) maps

EOFs characterize ~80% of the
variability in the North Atlantic
with 3 modes instead of 968 grid
cells (22 lat by 44 lon)

North
Atlantic
Oscillation

FOF1
(53.3%)

|\ EOF2
(16.5%)

 EOF3
(11.6%)
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EOF analysis is a form of unsupervised learning

Example EOF analysis

N_images, N_pixels per image

F(N_pixels) > N_EOFs

training
—p

Reduced space

* Trained EOFs on 350 images from the Olivetti face database
* Each image has 64 x 64 pixels (4096 total pixels)
* Retained 100 EOFs (explain 57.7% of the variance)
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EOF analysis is a form of unsupervised learning

Example EOF analysis

N_images, N_pixels per image

Reconstructed Actual

F(N_pixels) > N_EOFs F-1(N_EOFs) - N_pixels
o
(¢°)
o
training .2
—_— Q[ ———
g
)
Q
o

* Trained EOFs on 350 images from the Olivetti face database
* Each image has 64 x 64 pixels (4096)
* Retained 100 EOFs (explain 57.7% of the variance)
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Autoencoders are related to Empirical Orthogonal Functions

EOFs

training
—

Reduced space

 The “O” in EOF implies the components in the reduced space are linearly related.
* Independent components are available for interpretation.

* Fast to train and relatively few samples needed, but many components may be
needed for noisy data.
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Autoencoders are related to Empirical Orthogonal Functions

Autoencoders
o
©
Neural net | training T Neural net
+=J >
encoder < decoder

8
* Neural networks transform the data.  Many samples needed and slow to train.
* Latent space features can be non- * Easy to augment latent space with

linearly related. additional information.

* |Interpretability can be challenging. * Autoencoders with linear activation

functions == EOFs.
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Conditional Generative Forecasting (CGF) model

GCM Index (M)

Input: 8 x 90 x 180 [~130,000]

Encoding /
Ocean heat (X) {1

Latent space: 128 x 6 x 12 [~9,000]

&3’ Y
Latent space: 128 x 6 x 12 [~9,000] 5 R
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Predictor (X) - -
Upper ocean thermal state
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Conditional Generative Forecasting (CGF) model

GCM Index (M)

Encoding / {
Ocean heat (X) {

Input: 8 x90 x 180 [~130,000]
Latent space: 128 x 6 x 12 [~9,000]

-
-

Training

Precipitation -or- Surface temperature (Y)
Input: 1 x 90 x 180 [~16,000]
Latent space: 128 x 6 x 12 [~9,000]

Embedding

GCM information (M) is concatenated into the latent
space with a learned embedding vector

| Forecast
P(IX,M)

Predictand (Y)
Precipitation/2m temperature

Y
Latent space
é

€

»
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Predictor (X) = -
Upper ocean thermal state
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Conditional Generative Forecasting (CGF) model

Encoding

Ocean heat (X)

Input: 8 x90 x 180 [~130,000]
Latent space: 128 x 6 x 12 [~9,000]

Precipitation -or- Surface temperature (Y)
Input: 1 x 90 x 180 [~16,000]
Latent space: 128 x 6 x 12 [~9,000]

Embedding

GCM information (M) is concatenated into the latent
space with a learned embedding vector

Probabilistic Forecasts

The latent space z is represented by a Gaussian
distribution that depends on X and M, and a mapping
function that relates Y to z.
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I CMIPS5 historical (10231)

Built using control + pre-1982

historical simulations
* Tested using 30 years of historical

CMIP5 control (7570)

CMIP6 control (11088)

simulations (1982-2012)

7000

CGF used 52,201 simulated years from 30 climate models
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Evaluation Strategy

Dynamical Forecasts P — ‘
* North American Multi-Model Ensemble (NMME) NN/ AT_,,'e,thAmeﬁca,,Mu.ﬁ-Mode.;.,semb.e

* Forecast anomalies of precipitation and 2-m temperature
* Four models, 10 ensemble members each (CCSM4, CESM1, CanCM4, GFDL CM?2.5)

" . "‘l
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Evaluation Strategy

“Observations”

* For comparison: precipitation from the Global Precipitation Climatology Project (GPCP) Vﬁ
* For comparison: temperature from ECMWF Reanalysis v5 (ERA5)

* For CGF input: ocean heat from ECMWF Ocean Reanalysis (ORAS5) 0= ECMWF

. o al
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Evaluation Strategy

Metrics to assess forecast skill
e Deterministic:

I:> 1. anomaly correlation coefficient 2. normalized root mean square skill
* Probabilistic:
1. area under ROC curve 2. continuous ranked probability score

. . ( "‘I
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CGF is competitive with dynamical seasonal forecast systems

Forecast skill for 2-m temperature for CGF,, rsm

e Conditioned on a single GCM (CanESM)
 Anomaly correlation coefficients for October-March average initialized from July ocean heat

CGFcanesm for CanESM simulations CGFcanesm for observations CanCM4 for observations

I EEI AN
=4
[o)}

=4
N

model simulations vs. observations deep learning vs. dynamical system
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CGF is competitive with dynamical seasonal forecast systems

Forecast skill for precipitation for CGF_ .t

e Conditioned on a single GCM (CanESM)
 Anomaly correlation coefficients for October-March average initialized from July ocean heat

CGFcanesm for CanESM simulations CGFcanesm for observations CanCM4 for observations

<0.2

model simulations vs. observations deep learning vs. dynamical system

CGF

LLNL-PRES-817982
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CGF is competitive with dynamical seasonal forecast systems

Single model ensemble forecasts for CGF,esm

2-m air temperature ~ precipitation
S 0.7, , 030
< , < —— = g 0.25 <> ==
8 06 <> <+ model world '<c‘s: <> <>
?éJ 0.5} <> vs. real world % 0.20 <> <> <
v <> - == — o 0.15}
s T — :
> 03 g <> pe eep learning vs. dynamica > 0_10
5 $ © 0.05
© 0.2 =
) 0.1 dynamical size limit % 0.00
1 2 4 8 16 32 64 128 256 1 2 4 8 16 32 64 128 256
Ensemble size Ensemble size
O CGFcanesm for CanESM simulations H CGFc,nesm for observations CanCM4 for observations
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CGF is competitive with multi-model ensemble dynamical
seasonal forecast systems

Forecast skill for precipitation for CGF ensemble

* Considers multiple models and multiple initializations per model
 Anomaly correlation coefficients for October-March average initialized from July ocean heat

CGFg,. for real-world forecast

R —

60°E 120°E 180 120°W 60°W 60°E 120°E 180 120°W 60°W 60°E 120°E 180 120°W 60°W

Thirty dynamical models, ten Optimal dynamical model (IW) Four dynamical models, ten
ensemble members each with 300 realizations ensemble members each

. . (24
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CGF’s latent space can be interpolated, sampled, and explored

t-SNE for CGF precipitation

(t-distributed stochastic neighbor embedding)

HadCM3 .GanESMZ GISS-E2-H-@C M Visualizing Autoencoders with Tensorflow.js
CanESM5 ®
.FGOALS—gz . ‘BSL_CMGA—LR File Edit View History Bookmarks Tools Help — O X
.CMCC_CESM C,SIRO—Mk3—6—0 )VisualizingAutoencoderswith X +
N i C O & hnttpsy//douglasd. B W Y =
c eMPI-ESM-LR ACCESS-CM2 oo .
o) MIROCS. | 6
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] CESM2 @ Had ChsUGEN3-GCa1-LL
2 TNRMeCMS-2 o o G
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© o el MIROC6 . MRI-ESM2-0
Annde 4o MR|-CGCM3 -
Bi#PI-ESM1-2-1iR Bcc-CSM2MR - -
® CNRM-CM6-1®
.GFDL—CM2p1
"
dimension 1 v
_ https://douglasduhaime.com/posts/visualizing-latent-spaces.html
‘o CMIP5 GCMs e CMIP6 GCMs @ Optimal GCM entity embedding vector (M)|
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Summary and conclusions

Deep learning can help with climate modeling and seasonal forecasting.

e e.g., autoencoders are non-linear generalizations of Empirical Orthogonal Function analysis
e generative models can capture distributions of data for probabilistic models and ensembles

We built a deep learning-based Conditional Generative Forecast (CGF) model.
e Uses conditional variational autoencoder technology.

e Skillful in predicting Oct-Mar precipitation and temperature initialized from July ocean heat
content (relative to dynamical ensemble forecasts).

* Incorporates probability distributions of the initial state and multi-model ensembles.
Work is on-going to better understand sources of predictability at the seasonal time
scale using deep learning systems.

* E.g., using saliency maps and analysis
See Pan et al (2021) in JAMES for related work using Generative Adversarial
Networks to bias correct climate projections.
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Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.



Architecture of CGF

(a) Structure of the Conditional Generative Forecasting (CGF) model

M - Embedding

Y (1x90x180) - R4 » R3z2 -+ Rgs — Ry2g X’ :>-) - Repara. —;—> :>-) > Tea = Tea = Tea — Tea 6%% ?(13(90)(180)

X(8X90X180) - R16 - R32 - R64 - R128

(b) Residual block: Rc (c) Transposed residual block: T

cx1x1 cx4x4
T BN D - BN
“ + 4 P ° + ~_/
BN/~ -1BN -~ _/ ~&-{BN Ry -{BN{~_/~{D {~{BN[~_/ ~ &= ~IBN[~ _/ ~ &= BN
cx1x1 cx3x3 cx3x3 cx3x3 cx4x4 cx3x3 cx1x1

(d) Neural network operators

Iit] BN _/ P + :>-> D Repara. Embedding

Convolution BatchNorm RelLU Max Pooling Plus Catenate Transpose convolution Reparameterization Entity embedding
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