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Deep learning is becoming competitive with dynamical seasonal 
forecast systems

Skill in predicting October-March average precipitation initialized from July

anomaly 
correlation 
coefficient

Which map is from NOAA’s North American Multi-Model Ensemble (NMME), 
and which is from deep learning of climate models? 

Observational period 1982-2012
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This presentation provides an overview of our recent JAMES paper

24 JAN 2022 
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Our JAMES paper was motivated by a project to improve 
seasonal predictions of water resources in California

Can deep learning exploit low frequency 
signals in the climate system to improve 
seasonal predictions?

Persistent climate patterns steer storms 
toward or away from California.
E.g., the “Ridiculously Resilient Ridge”
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Two recent papers suggested deep learning applied to climate 
simulations may be useful 
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Deep learning (DL) is a promising approach to help improve 
climate predictions 

☑Deep neural networks can discover patterns or 
“features” automatically that humans cannot

☑Can keep memory effects and rich spatial structure

☑Observational data can be used more effectively 
(“data-driven” approach)

☑Can fully leverage pre-existing data

☑Offers huge speed up in time and resources 

☑Complements traditional methods

Machine 
Learning

Artificial 
Intelligence

Deep 
Learning
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Probabilistic approaches are required for seasonal forecasts

Forecast time

Initial
Conditions

Initialization 
errors

Model 
structural 

errors

Ensemble 
size

Dynamical forecasts
• Initialize from different states
• Incorporate multiple models
• Limited sample size due to computational 

costs

Deep learning forecasts
• Initialize at different points in continuous 

runs to learn seasonal dependencies
• Train on multiple climate models
• Use generative/variational methods to 

represent distributions
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CGF is built using

Convolutional neural networks (CNNs)
• From computer vision
• Designed for maps and images 

Autoencoders / U-Nets
• Effective at extracting low-dimensional patterns and features
• Non-linear generalization of Empirical Orthogonal Functions

We developed the Conditional Generative Forecasting (CGF) 
system for seasonal forecasts

Conditional variational methods
• Approximate probability distribution function (PDF) of the 

input / output data
• Enable drawing plausible samples from the PDF

Inputs: maps of ocean heat content in 
July (8 layers, 5-100 m)

Outputs: maps of Oct-March average 
precipitation or air temperature
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Autoencoders are related to Empirical Orthogonal Functions

EOFs characterize ~80% of the 
variability in the North Atlantic 
with 3 modes instead of 968 grid 
cells (22 lat by 44 lon)

• EOFs are a technique used for 
extracting spatial and 
spatiotemporal patterns.

• EOFs are also known as Principal 
Component Analysis (PCA)

Consider a set of monthly mean 
sea level pressure (SLP) maps

EOF1 
(53.3%)

EOF2 
(16.5%)

EOF3 
(11.6%)

North 
Atlantic 
Oscillation
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EOF analysis is a form of unsupervised learning

EOF 
transform

Re
du

ce
d 

sp
ac

e

training EOF1 EOF2

EOF3 EOF4

Example EOF analysis

F(N_pixels) à N_EOFs

• Trained EOFs on 350 images from the Olivetti face database
• Each image has 64 x 64 pixels (4096 total pixels)
• Retained 100 EOFs (explain 57.7% of the variance)

N_images, N_pixels per image
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EOF analysis is a form of unsupervised learning

EOF 
transform

N_images, N_pixels per image

Re
du

ce
d 

sp
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e

training

Example EOF analysis

• Trained EOFs on 350 images from the Olivetti face database
• Each image has 64 x 64 pixels (4096)
• Retained 100 EOFs (explain 57.7% of the variance)

EOF 
inverse

F(N_pixels) à N_EOFs F-1(N_EOFs) à N_pixels

Reconstructed Actual
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EOF 
transform

EOF 
inverse

Re
du

ce
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sp
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e

training

EOFs

Autoencoders are related to Empirical Orthogonal Functions

• The “O” in EOF implies the components in the reduced space are linearly related.
• Independent components are available for interpretation.
• Fast to train and relatively few samples needed, but many components may be 

needed for noisy data.
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Neural net 
encoder

Neural net 
decoder

La
te

nt
 sp

ac
e

training

Autoencoders

Autoencoders are related to Empirical Orthogonal Functions

• Neural networks transform the data. 
• Latent space features can be non-

linearly related. 
• Interpretability can be challenging.

• Many samples needed and slow to train. 
• Easy to augment latent space with 

additional information. 
• Autoencoders with linear activation 

functions == EOFs.
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Conditional Generative Forecasting (CGF) model

enc
odi

ng

Encoding 
Ocean heat (X)
Input:  8 x 90 x 180  [~130,000]
Latent space: 128 x 6 x 12 [~9,000]

Precipitation -or- Surface temperature (Y)
Input: 1 x 90 x 180   [~16,000]
Latent space: 128 x 6 x 12  [~9,000]

Embedding
GCM information (M) is concatenated into the latent 
space with a learned embedding vector

Probabilistic Forecasts
The latent space z is represented by a Gaussian 
distribution that depends on X and M, and a mapping 
function that relates Y to z.
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Conditional Generative Forecasting (CGF) model

enc
odi

ng
decoding

Encoding 
Ocean heat (X)
Input:  8 x 90 x 180  [~130,000]
Latent space: 128 x 6 x 12 [~9,000]

Precipitation -or- Surface temperature (Y)
Input: 1 x 90 x 180   [~16,000]
Latent space: 128 x 6 x 12  [~9,000]

Embedding
GCM information (M) is concatenated into the latent 
space with a learned embedding vector

Probabilistic Forecasts
The latent space z is represented by a Gaussian 
distribution that depends on X and M, and a mapping 
function that relates Y to z.
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CGF used 52,201 simulated years from 30 climate models

• Built using control + pre-1982 
historical simulations

• Tested using 30 years of historical 
simulations (1982-2012)
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Evaluation Strategy

Dynamical Forecasts 
• North American Multi-Model Ensemble (NMME)
• Forecast anomalies of precipitation and 2-m temperature 
• Four models, 10 ensemble members each (CCSM4, CESM1, CanCM4, GFDL CM2.5)

“Observations”
• For comparison: precipitation from the Global Precipitation Climatology Project (GPCP)
• For comparison: temperature from ECMWF Reanalysis v5 (ERA5)
• For CGF input: ocean heat from ECMWF Ocean Reanalysis (ORAS5)

Metrics to assess forecast skill
• Deterministic:

1. anomaly correlation coefficient 2. normalized root mean square skill
• Probabilistic:

1. area under ROC curve 2. continuous ranked probability score
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CGF is competitive with dynamical seasonal forecast systems

Observational period 1982-2012
CGF

Forecast skill for 2-m temperature for CGFCanESM
• Conditioned on a single GCM (CanESM)
• Anomaly correlation coefficients for October-March average initialized from July ocean heat

CGFCanESM for CanESM simulations CGFCanESM for observations CanCM4 for observations

model simulations vs. observations deep learning vs. dynamical system
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CGF is competitive with dynamical seasonal forecast systems

Observational period 1982-2012
CGF

Forecast skill for precipitation for CGFCanESM
• Conditioned on a single GCM (CanESM)
• Anomaly correlation coefficients for October-March average initialized from July ocean heat

CGFCanESM for CanESM simulations CGFCanESM for observations CanCM4 for observations

model simulations vs. observations deep learning vs. dynamical system
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CGF is competitive with dynamical seasonal forecast systems

Single model ensemble forecasts for CGFCanESM
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2-m air temperature  precipitation

CGFCanESM for CanESM simulations CGFCanESM for observations CanCM4 for observations

deep learning vs. dynamical

model world 
vs. real world

dynamical size limit
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CGF is competitive with multi-model ensemble dynamical 
seasonal forecast systems

Forecast skill for precipitation for CGF ensemble 
• Considers multiple models and multiple initializations per model 
• Anomaly correlation coefficients for October-March average initialized from July ocean heat

CGFEns for real-world forecast CGFM for real-world forecast NMME for real-world  forecast

Four dynamical models, ten 
ensemble members each

Thirty dynamical models, ten 
ensemble members each

Optimal dynamical model (M) 
with 300 realizations

~

~
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CGF’s latent space can be interpolated, sampled, and explored 

t-SNE for CGF precipitation
(t-distributed stochastic neighbor embedding)

dimension 1

di
m

en
sio

n 
2

https://douglasduhaime.com/posts/visualizing-latent-spaces.html
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Summary and conclusions

• Deep learning can help with climate modeling and seasonal forecasting.
• e.g., autoencoders are non-linear generalizations of Empirical Orthogonal Function analysis
• generative models can capture distributions of data for probabilistic models and ensembles

• We built a deep learning-based Conditional Generative Forecast (CGF) model. 
• Uses conditional variational autoencoder technology.
• Skillful in predicting Oct-Mar precipitation and temperature initialized from July ocean heat 

content (relative to dynamical ensemble forecasts). 
• Incorporates probability distributions of the initial state and multi-model ensembles.

• Work is on-going to better understand sources of predictability at the seasonal time 
scale using deep learning systems. 
• E.g., using saliency maps and analysis

• See Pan et al (2021) in JAMES for related work using Generative Adversarial 
Networks to bias correct climate projections.
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Architecture of CGF


