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MOTIVATION
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Can we identify atmospheric circulation patterns that are 

▪ informative of a target variable,

▪ predictable,

▪ physically robust?

Potential for machine learning!

We aim for causal representations of large-scale dynamics based on interpretable 
machine learning architectures
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TASK: IDENTIFYING TARGETED CIRCULATION PATTERNS
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Spuler et al. (2024); Spuler et al. (WCD, in revision) Carvalho Oliveira et al. (in preparation)



COMBINING DIMENSIONALITY REDUCTION AND CLUSTERING 
Conventional approach (non-targeted): 
Principal component Analysis + k-means clustering (PCA/EOF + kmeans)

Our approach (targeted): 
Variational autoencoder combined with a gaussian mixture model RMM-VAE / CMM-VAE

Scalar target 
variable

input

Target 

variable

e.g. Z500

Reduced space

cluster 
assignment

output

Categorical 
target variable

Spuler et al. (2024); Spuler et al. (WCD, in revision)



IDENTIFYING TARGETED CIRCULATION PATTERNS
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Spuler et al. (2024); Spuler et al. (WCD, in revision)

Data

•  5d-standardized z500 (Era5)
• (spatial clusters) of 3-day averaged 

precipitation over Morocco (CHIRPS v2.0) 
• 1981-2022



CIRCULATION PATTERNS FOR EXAMPLE 1: MOROCCO PRECIP
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CMM-VAE PATTERNS ARE MORE INFORMATIVE OF EXTREMES

7Spuler et al. (2024), Spuler et al. (WCD, in revision)

Furthermore: 
- they are similarly robust
- are equally well predictable
- capture known teleconnection 

signals



IDENTIFYING TARGETED CIRCULATION PATTERNS
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temp

Example 2 (JJA)

Carvalho Oliveira et al. (in preparation)

Data

• 5d-standardized sf500 (Era5)
• 5-day standardized t2m average (Era5)
• 1950-2022



CIRCULATION PATTERNS FOR EXAMPLE 2: WEST EUROP TEMP
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9Carvalho Oliveira et al. (in preparation)



EXPLAINING OBSERVED EXTREME EVENTS
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Carvalho Oliveira et al. (in preparation)



EXPLAINING OBSERVED TRENDS

0.57°/dec
0.39°/dec
0.21°/dec

TJJA = a WR1JJA + b GMTJJA  + ε
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WR1-induced trend (°C/dec)

k-means

22%

RMM-VAE

34%

Total trend (°C/dec)

Carvalho Oliveira et al. (in preparation)



CONCLUSIONS & OUTLOOK
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o Our aim is finding causal representations of large-scale dynamics 

o We introduce a new method (RMM/CMM-VAE) for identifying atmospheric circulation patterns 

targeted to a local-scale impact variable which has key advantages over conventional approaches

o Similar line of thinking:

Bommer et al. (2025, Machine Learning: Earth) Mindlin et al. (2025, PNAS)

Thank you!
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