

CAUSAL REPRESENTATIONS OF LARGE-SCALE DYNAMICS DRIVING REGIONAL EXTREME EVENTS

Marlene Kretschmer

Fiona Spuler, Julianna Carvalho Oliveira Ted Shepherd, Magdalena Alonso Balmaseda, Yevgeniya Kovalchuck

MOTIVATION

Can we identify atmospheric circulation patterns that are

- informative of a target variable,
- predictable,
- physically robust?

Potential for machine learning!

We aim for <u>causal representations of large-scale dynamics</u> based on <u>interpretable</u> <u>machine learning</u> architectures

TASK: IDENTIFYING TARGETED CIRCULATION PATTERNS

Example 1 (NDJFM)

Spuler et al. (2024); Spuler et al. (WCD, in revision)

Example 2 (JJA)

Carvalho Oliveira et al. (in preparation)

COMBINING DIMENSIONALITY REDUCTION AND CLUSTERING

Conventional approach (non-targeted):

Principal component Analysis + k-means clustering (PCA/EOF + kmeans)

Our approach (targeted):

Variational autoencoder combined with a gaussian mixture model RMM-VAE / CMM-VAE

Scalar target variable

Categorical target variable

IDENTIFYING TARGETED CIRCULATION PATTERNS

Example 1 (NDJFM)

Data

- 5d-standardized z500 (Era5)
- (spatial clusters) of 3-day averaged precipitation over Morocco (CHIRPS v2.0)
- 1981-2022

Spuler et al. (2024); Spuler et al. (WCD, in revision)

CIRCULATION PATTERNS FOR EXAMPLE 1: MOROCCO PRECIP

Spuler et al. (WCD, in revision)

CMM-VAE PATTERNS ARE MORE INFORMATIVE OF EXTREMES

Furthermore:

- they are similarly robust
- are equally well predictable
- capture known teleconnection signals

IDENTIFYING TARGETED CIRCULATION PATTERNS

<u>Data</u>

- 5d-standardized sf500 (Era5)
- 5-day standardized t2m average (Era5)
- 1950-2022

Example 2 (JJA)

Carvalho Oliveira et al. (in preparation)

CIRCULATION PATTERNS FOR EXAMPLE 2: WEST EUROP TEMP

k-means

RMM-VAE

EXPLAINING OBSERVED EXTREME EVENTS

EXPLAINING OBSERVED TRENDS

 $T_{JJA} = a WR1_{JJA} + b GMT_{JJA} + \varepsilon$

Total trend (°C/dec)

WR1-induced trend (°C/dec)

CONCLUSIONS & OUTLOOK

Thank you!

- Our aim is finding causal representations of large-scale dynamics
- We introduce a new method (RMM/CMM-VAE) for identifying atmospheric circulation patterns targeted to a local-scale impact variable which has key advantages over conventional approaches
- Similar line of thinking:

Bommer et al. (2025, Machine Learning: Earth)

License: CC BY 4.0 arXiv:2504.07625v1 [cs.LG] 10 Apr 2025

Deep Learning Meets Teleconnections: Improving S2S Predictions for European Winter Weather

Philine L. Bommer^{1,2}, Marlene Kretschmer^{3,4}, Fiona R. Spuler^{4,5}, Kirill Bykov^{1,2,7}, Marina M.-C. Höhne^{1,2,6,7}

¹Understandable Machine Intelligence Lab, TU Berlin, Berlin, Germany ²Department of Data Science, ATB, Potsdam, Germany ³Leipzig Institute for Meteorology, Leipzig University, Leipzig, Germany ⁴Department of Meteorology, University of Reading, Reading, UK ⁵The Alan Turing Institute, London, UK ⁶Institute of Computer Science - University of Potsdam, Potsdam, Germany ⁷BIFOLD – Berlin Institute for the Foundations of Learning and Data, Berlin, Germany

pbommer@atb-potsdam.de

Mindlin et al. (2025, PNAS)

