

# Anthropogenic amplification of precipitation variability over the past century

Wenxia Zhang

Nanjing University

(Institute of Atmospheric Physics, Chinese Academy of Sciences)

Thanks to Tianjun Zhou, Peili Wu

## The hydrological cycle is intensifying as climate warms



What other changes are we experiencing?

# **Changes in climate variability**

Precip variability: range of precip fluctuations (measured by temporal variance or standard deviation)



Daily precip time series over North America

#### Larger variability means

- intensified wet and dry periods
- greater swings between them
- Less reliable freshwater supply

## How does precipitation variability change in a warming climate?

- Observed changes
- Physical processes
- Anthropogenic influence
- Contribution of extreme precipitation change

## **Observational data**

#### 13 sets of daily precip observations (with timespan of ~40 years or more)

| Region                     | Dataset               | Time span         | Spatial resolution                 | Data type Data selection:                 |
|----------------------------|-----------------------|-------------------|------------------------------------|-------------------------------------------|
| Global land                | GHCN-Daily            | station-dependent | -                                  | Gauge sufficient sampling                 |
|                            | REGEN_LONG            | 1950-2016         | 1° ×1°                             | Gauge-based g frequency and time          |
|                            |                       |                   |                                    | term stations only,                       |
|                            | CPC_Global            | 1979 to present   | 0.5° × 0.5°                        | Gauge-based analysis                      |
|                            | GPCC Full Daily v2020 | 1982-2019         | 1° ×1°                             | Gauge-based gridded data                  |
|                            | MSWEP                 | 1979 to present   | 0.1° × 0.1°                        | Gauge, satellite, and reanalysis combined |
|                            |                       |                   |                                    | gridded product                           |
| Low-to-mid latitudes       | CHIRPS                | 1981 to present   | 1° ×1°                             | Gauge and satellite combined gridded      |
|                            |                       |                   |                                    | product                                   |
| Australia                  | AWAP                  | 1900 to present   | $0.25^{\circ} \times 0.25^{\circ}$ | Gauge-based gridded data                  |
| Europe                     | E-OBS                 | 1920 to present   | 0.25° × 0.25°                      | Gauge-based gridded data                  |
| Conterminous United States | CPC_CONUS             | 1948 to present   | $0.25^{\circ} \times 0.25^{\circ}$ | Gauge-based analysis                      |
| China                      | CN05.1                | 1961 to present   | $0.25^{\circ} \times 0.25^{\circ}$ | Gauge-based gridded data                  |
| Monsoon Asia               | APHRO_MA              | 1951-2015         | $0.5^{\circ} \times 0.5^{\circ}$   | Gauge-based gridded data                  |
| Middle East                | APHRO_ME              | 1951-2007         | $0.5^{\circ} \times 0.5^{\circ}$   | Gauge-based gridded data                  |
| Northern Eurasia           | APHRO_RU              | 1951-2007         | 0.5° × 0.5°                        | Gauge-based gridded data                  |





spatial scale

## **Amplified precip variability since 1900s**

#### Linear trend in daily precip variability over 1900-2020



- Over land regions with sufficient data, precip variability has amplified over ~75% of area
- Daily variability increased by ~1.2%/decade globally

## Hotspots: Europe, Australia and eastern North America

Long-term change in daily precip variability



The consistency across multiple observations confirms the robustness of the increasing trend.

## **Amplified across timescales**

- The synoptic, monthly and intraseasonal variability show consistent increases
- For interannual variability, no significant trend has emerged from the strong inter-decadal variability



# Why does precipitation variability amplify?

#### Moisture budget equation (suitable for diagnosing mean state)

$$P - E = -\langle \omega \partial_p q \rangle - \langle V \cdot \nabla q \rangle + \delta_0$$

#### Adjusted equation (suitable for diagnosing std)

$$\Delta \sigma[P_f] pprox \Delta \sigma \left[ \left( -rac{\omega_m q_l}{g} 
ight)_f 
ight]$$
 Vertical moisture advection

P: precipitation

E: evaporation

ω: vertical motion

V: horizontal wind

q: specific humidity

<>: vertical integration

f: variation at specific time scale

 $\omega_m$ : 500hPa omega

 $q_1$ : 850hPa specific humidity

 $\sigma$ : standard deviation

 $\delta$ : relative change

#### Thermodynamic:

Atmospheric moisture increase

 $TH \approx \delta \overline{q}_{l}$ 

#### **Dynamic:**

Change in atmospheric circulation variability

$$DY \approx \delta\sigma[-(\omega_m)_f]$$

#### Non-linear:

Due to changes in humidity & circulation

$$NL pprox \Delta \sigma \left[ \left( -rac{\omega_m q_l}{g} \right)_f \right] - TH - DY$$

# Why does precipitation variability amplify?



$$\Delta\sigma[P_f] \approx \Delta\sigma\left[\left(-\frac{\omega_m q_l}{g}\right)_f\right]$$

- Dominated by the thermodynamic effect due to atmospheric moistening, with a contribution of ~60% at regional scale
- Modulated at decadal timescales by atmospheric circulation changes

# **Detecting anthropogenic fingerprints**

#### Forced responses of precip variability over 1900-2020 (CMIP6 DAMIP ensemble)



- The global-scale amplification of precip variability in OBS can be reproduced with ALL forcings
- Tug-of-war between GHG and AA forcings
- Model-OBS discrepancy over East Asia (too strong AA forcing)

## **Detecting anthropogenic fingerprints**



#### Optimal fingerprinting detection and attribution



D&A: the observed increase in precipitation variability over the past century is attributed to anthropogenic GHG forcing

## Changes in precip variability vs. mean precip vs. extreme precip

#### **Trend over 1961-2023**



- Similar spatial pattern: similar large-scale dynamic drivers
- Precip variability increases over a wider spatial extent and at a greater magnitude than mean and extreme precip

(Mo, Zhang, et al. in revision)

## Contribution of extreme precipitation change



Changes in extreme precip contributed ~75% to the amplification of precip variability over China.

# **Summary**

- Observed change
  - Systematically amplified over the past century from global to regional scales and across timescales from daily to intra-seasonal
- Physical processes
  - Dominated by the thermodynamic effect due to atmospheric moistening
  - Modulated at decadal timescales by atmospheric circulation changes
- Attributable to anthropogenic GHG forcing
- Contribution of extreme precipitation change
  - Changes in extreme precip contributed ~75% to the amplification of precip variability

