

On human fingerprints of climate change

Ben Santer, Susan Solomon, David Thompson, Qiang Fu, and Yaowei Li

Busan, Korea

July 18th, 2025

The arc of history...

Natural and human fingerprints on climate

Internal consistency of fingerprint evidence

Atmospheric temperature

Tropopause height

Atmospheric water vapor

Ocean heat content

Snowpack depth

Runoff

SST changes in hurricane formation regions

Seasonal cycle of tropospheric temperature

Seasonal cycle of ocean surface temperature

Drought properties

Changes in these and many other climate variables are internally and physically consistent (and independently monitored)

Cloud properties

Theory and early modeling

Thermal Equilibrium of the Atmosphere with a Given Distribution of Relative Humidity

SYUKURO MANABE AND RICHARD T. WETHERLAND

Geophysic al Fluid Dynamics Laboratory, ESSA, Washington, D.C. (Manus cript received 2 November 1966)

"Vertical fingerprinting" with satellite temperature data

Data

Temperature trend over 1986 to 2024

Source: Santer et al., PNAS (2023; updated)

The human-caused "vertical fingerprint" is robust across a range of climate models

A simple thought experiment

 Imagine a world in which humanity had, as early as 1860, the capability to accurately measure global changes in tropospheric and stratospheric temperature from space

• When could we have first detected, with high confidence, a "discernible human influence" on global climate?

A simple thought experiment

by Arearow Experience

documented and brooks brooks to Dagland in 1986. (The Enthrold Brook de Brooking Analysis

Global-mean stratospheric temperature changes: 1860 to 2024

Blue = Satellite data
Red = Trend in data
Black = Model average

Early CO₂ and stratospheric temperature changes

Early emergence of stratospheric cooling

Calculating fingerprint detection times

Calculating fingerprint detection times

Trend in noise and signal time series

Why?

Source: Santer et al., PNAS (2023)

Bottom line

A human-caused stratospheric cooling signal would have been identifiable by approximately 1885, before the advent of gas-powered cars. Our results suggest that a discernible human influence on atmospheric temperature has likely existed for over 130 years.

