Session C-3 Impact of circulation changes on extreme events

Zhuo Wang: Weather regimes and the variability and predictability of tornadoes

Hamish Ramsay: Poleward migration of the most damaging tropical cyclones

Marlene Kretschmer: Using machine learning to infer

WCRP EPESC/LEADER Workshop

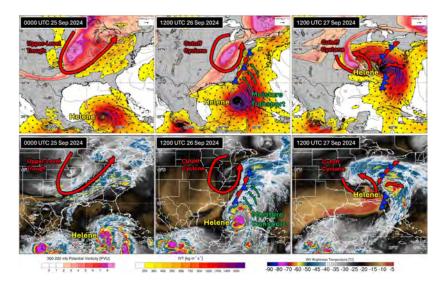
17 July 2025

Context

Response of extremes to climate change typically assessed in terms of

- thermodynamic contribution and baseline changes
- dynamic contribution

Typically, less certainty around the dynamic contribution to extremes


ightarrow focus of EPESC/LEADER

Dynamical contribution components

- 1. relationships between large scale circulation and extreme events
 - summer large scale circulation and heatwaves
- 2. characterise changes in large scale circulation
 - role of forced response and internal variability
 - LESFMIP/LEADER
- 3. relate circulation changes to extremes

Complex relationships between flow and extremes

recent example: Hurricane Helene, September 2024

Helene

Circulation and background changes

- changes in SST fields and Hurricane extent/range
- changes in steering level fields and Hurricane tracks
- changes in intensification rates and power
- more tropical extratropical transitions?
- more tropical extratropical interactions?
- changes in atmospheric moisture and rainfall from cutoff lows
- changes in preferred subtropical jet locations, blocking and cutoff lows

Different approaches required

three different approaches in this session:

- 1. Zhuo weather regime shifts and tornadoes
- 2. Hamish enhanced warming in subtropics and TCs
- 3. Marlene | ML to relate predictable modes to extremes