Understanding historical changes in the Northern Hemisphere stratospheric polar vortex: insights from the Large Ensemble Single Forcing Model Intercomparison Project

Ales Kuchar

David Avisar

Chaim Garfinkel

Isla Simpson

et al

LEADER

Large Ensembles for Attribution of Dynamically-driven ExtRemes

LEADER is a limited-term activity from 2024–2026 focused on analyzing the outputs of the Large Ensemble Single Forcing Model Intercomparison Project (LESFMIP), an ongoing extension of the Detection & Attribution MIP (DAMIP) protocol to more forcing agents and larger ensembles:

Large Ensemble

What are the characteristics of internal variability?

Single Forcing

What is the response to different forcings?

MIP

How well are current climate models doing?

Centre for Environmental Data Analysis SCIENCE AND TECHNOLOGY FACILITIES COUNCIL NATURAL ENVIRONMENT RESEARCH COUNCIL

Objectives of the LEADER activity:

- Provide a process-based understanding of recent annual to decadal climate changes
- Quantify the roles of internal variability and external drivers
- Assess predictability, sources of skill, drivers and mechanisms to increase confidence in predictions and projections
- Contribute to IPCC and WMO Climate Update and State of Climate reports

To sign up, or for more information, contact:

Chaim Garfinkel (chaim.garfinkel@mail.huji.ac.il)
Scott Osprey (scott.osprey@physics.ox.ac.uk)

LEADER: 8 working groups

- 1) Role of annual to decadal variability of the polar vortex for surface climate
- 2) Identifying the forced response of the **Southern Hemispheric atmospheric circulation** to greenhouse gases, aerosols, and ozone, and associated surface impacts on extremes
- 3) Identifying the forced response of the **Northern Hemispheric atmospheric circulation** to greenhouse gases, aerosols, and ozone, and associated surface impacts on extremes
- 4) Surface response to **solar** variability
- 5) Surface response to **Pinatubo** and other large **eruptions**
- **6) QBO** influences on surface climate (3 models spontaneously simulate a QBO)
- 7) Identifying the forced response of the **Asian monsoon** to greenhouse gases, aerosols, and ozone, and associated surface impacts on extremes
- 8) Role of external forcings and internal variability for atmospheric temperature trends

LEADER: 8 working groups

- 1) Role of annual to decadal variability of the polar vortex for surface climate
- 2) Identifying the forced response of the **Southern Hemispheric atmospheric circulation** to greenhouse gases, aerosols, and ozone, and associated surface impacts on extremes
- 3) Identifying the forced response of the **Northern Hemispheric atmospheric circulation** to greenhouse gases, aerosols, and ozone, and associated surface impacts on extremes
- 4) Surface response to **solar** variability
- 5) Surface response to **Pinatubo** and other large **eruptions**
- 6) QBO influences on surface climate (3 models spontaneously simulate a QBO)
- 7) Identifying the forced response of the **Asian monsoon** to greenhouse gases, aerosols, and ozone, and associated surface impacts on extremes
- 8) Role of external forcings and internal variability for atmospheric temperature trends

Dataset

LESFMIP models

Large Ensemble Single Forcing MIP (LESFMIP)

- Mainly DAMIP simulations but >10 ensemble members from 1850-2020
- Additional runs to assess nonlinearity and sensitivity to background state
- ~13 modeling centers. Data from ten is already on ESGF. Three of the models spontaneously simulate a QBO.
- Phase 2 (2026) will include operational decadal forecasts

Experiment name	Description Well-mixed greenhouse-gas-only historical simulations (WMGHGs)				
hist-GHG					
hist-aer	Anthropogenic-aerosol-only historical simulations (BC, OC, SO2, SO4, NOx, NH3, CO, NMVOC)				
hist-sol	Solar-only historical simulations (solar irradiance)				
hist-volc	Volcanic-only historical simulations (stratospheric aerosol)				
hist-totalO3	Ozone-only historical simulations (stratospheric and tropospheric ozone)				
hist-lu	Historical simulations with only land use changes				

Dataset

Number of ensemble members

Model	Experiments					
	hist-GHG	hist-aer	hist-sol	hist-volc	hist-totalO3	
ACCESS-ESM1-5	10	3	9	10		
CanESM5	50	30	50	50	10	
CESM2	15	15				
CMCC-CM2-SR5	10	10		10		
FGOALS-g3	3	3				
GISS-E2-1-G	45	45	40	40	5	
HadGEM3GC31-LL	55	55	50	50	50	
IPSL-CM6A-LR	10	10				
MIROC6	50	10	10	10	10	
MPI-ESM1-2-LR	30	30	30	30	30	
NorESM2-LM	23	23	20	20	20	

Models fail to capture strengthening wintertime NA jet

Motivation

NOAA Climate.gov Data: Waugh et al., 2017

To constrain the projected response of the North Atlantic winter circulation with the strength of the winter stratospheric polar vortex

Large uncertainty in the projected winter Arctic stratospheric polar vortex response

CMIP5 vs CMIP6

Results

NOAA Climate.gov Data: Waugh et al., 2017

Wintertime **zonal wind, temperature** & **Northern Annular Mode (NAM)** trends for the period 1951-2014

Trends in temperature (DJF)

Sign test o ... p-values < 0.05 o ... p-values < 0.01

Trends in zonal wind (DJF)

Sign test o ... p-values < 0.05 o ... p-values < 0.01

Issues:

1) model disagreement in high latitudes

Trends in **U10** (DJF)

Trends in **U10** (DJF)

Possible emergent constraint?

Possible emergent constraint?

Possible emergent constraint?

Mechanism of wave attenuation

Parameterized saturated zonal

momentum flux:

 $MF_{x_{sat}}$

 $F_c^2 \varepsilon k \bar{\rho} U^3$

30 z (km)Valve Layer Critical 10 Level 20 $U (m s^{-1})$ Kruse et al (2016) in JAS

Trends in zonal wind (DJF)

Sign test o ... p-values < 0.05 o ... p-values < 0.01

Issues:

- 1) model disagreement in high latitudes
- 2) region selection

Courtesy of J. M. Wallace

[per decade]

- community effort from the WCRP's APARC LEADER and EPESC projects
- the inter-model spread in the NH stratospheric polar vortex responses as one of dominating for surface
- tug of war between high- (AA) and low-latitude (UTTW) forcing
- ongoing work aims at
 - understanding the model responses with respect to observations
 - possible emerging constraint
 - aerosol forcing

BACKUP

