

Contributions of Various Climate Forcings to Historical Southern Hemisphere Stratospheric Vortex Strength and Lifetime

Sabine Bischof Amy Butler, Julia Mindlin, Marisol Osman

SH stratospheric polar vortex

https://ozonewatch.gsfc.nasa.gov/

SH stratospheric polar vortex

1. SON mean state

https://ozonewatch.gsfc.nasa.gov/

SH stratospheric polar vortex

- 1. SON mean state
- 2. Transition from winter to summer circulation:
 - final warming date **SFW**

https://ozonewatch.gsfc.nasa.gov/

What effect does external forcing have on vortex strength and lifetime?

The LESFMIP data

Model	historical	hist-GHG	hist-aer	hist-totalO3
ACCESS-ESM1-5	40	10	10	
CMCC-CM2-SR5	11	10	10	
CNRM-CM6-1		10	10	
CanESM5	65	50	30	10
GISS-E2-1-G	89	45	45	5
HadGEM3-CG31-LL	55	55	55	50
IPSL-CM6A-LR	33	10	10	
MIROC6	50	50	10	10
MPI-ESM1-2-LR	51	30	30	30
NorESM2-LM	44	23	23	20

LESFMIP data (provided on JASMIN)

mainly monthly data

I focus on

- historical
- hist-GHG
 → GHG
- hist-aer → Aerosol
- hist-totalO3 → Ozone

SON - zonal mean zonal wind

 Strengthening of the vortex in historical simulation, which is due to GHG and Ozone forcing

Aerosols have a negative effect on zonal wind strength

Difference: 1980-2014 vs. 1850-1884

SON - zonal mean zonal wind

 Strengthening of the vortex in historical simulation, which is due to GHG and Ozone forcing

Aerosols have a negative effect on zonal wind strength

Difference: 1980-2014 vs. 1850-1884

SON - zonal mean zonal wind

 Strengthening of the vortex in historical simulation, which is due to GHG and Ozone forcing

Aerosols have a negative effect on zonal wind strength

Difference: 1980-2014 vs. 1850-1884

SON – zonal mean zonal wind anomalies

Anomalies relative to 1850-1884

- Strong volcanic signal in historical simulation
- Ozone and GHGs contribute to a strengthening of the vortex
- Aerosols counteract GHG and Ozone forcings

SFW dates in the reanalysis

- SFW definition based on Hardimann et al. (2011) at 50 hPa, 60°S
- 15 m/s threshold as in Ceppi and Shepherd (2019)

SFW dates in the historical simulations

too late SFWs for most models in historical experiment

SFW dates in the historical simulations

- too late SFWs for most models in historical experiment
- too early SFWs for most models in Aerosol experiment
- inconclusive for GHG and Ozone forcing

SFW dates – ensemble means

Anomalies relative to 1850-1884

- Ozone forcing explains most of the difference
- GHGs also contribute to a delay of the vortex break down
- Aerosols counteract GHG and Ozone forcings

SFW dates – trends: 1980-2013

SFW dates – trends: 1980-2013

Trends in historical experiment too strong compared to reanalysis

... due to too strong response in ozone?

Summary

Ozone and GHGs contribute to

- strengthening of the polar vortex in recent decades
- delay of the vortex breakdown

Aerosols tend to counteract Ozone and GHG forcing

Historical simulations are biased towards later SFW dates as compared to reanalyses

Summary

Ozone and GHGs contribute to

- strengthening of the polar vortex in recent decades
- delay of the vortex breakdown

Aerosols tend to counteract Ozone and GHG forcing

Historical simulations are biased towards later SFW dates as compared to reanalyses

Thank You!

Reanalysis

SON – zonal mean zonal wind anomalies

60°S, 10 hPa

Anomalies relative to 1850-1884

SFW dates for the different experiments

Anomalies relative to 1850-1884

SFW dates in the historical simulations

SFW Definition (using monthly data)

- based on Hardimann et al. (2011)
- assuming the monthly values to be in the center of the month, interpolating to find threshold crossing
- 50 hPa, 60°S (commonly used to define strength of the SH strat. polar vortex)
- 15 m/s threshold as in Ceppi and Shepherd (2019)

Sabine Bischof | Slide 23