Exploring the contributions of single atmospheric forcings on Antarctic sea ice trends using large ensembles

Bianca Mezzina^{1,2} & Chloe Boehm³
Within the SH WG

¹ECMWF

²Université catholique de Louvain

³Colorado State University

Introduction

Introduction

Positive trend in Antarctic SIE [⊕] → Many factors, experiments with single forcings can help! [⊕]

Introduction

⚠ Warning: models have limitations in the Southern Ocean...

Shu et al. et al 2020

Model	Experiments				
	Historical	hist-GHG	hist-aer	hist-totalO3	
ACCESS-ESM1-5	40	10	10		
CanESM5	65	50	30	10	
CMCC-CM2-SR5	10	10	10		
CNRM-CM6-1	30	10	10		
GISS-E2-1-G	40	40	40	40	
HadGEM3GC31-LL	55	55	55	50	
IPSL-CM6A-LR	33	10	10		
MIROC6	50	50	10	10	
MPI-ESM1-2-LR	50	30	30	30	
NorESM2-LM	43	23	23	20	

Climatological cycle of total SIE

Model	Experiments				
	Historical	hist-GHG	hist-aer	hist-totalO3	
ACCESS-ESM1-5	40	10	10		
CanESM5	65	50	30	10	
CMCC-CM2-SR5	10	10	10		
CNRM-CM6-1	30	10	10		
GISS-E2-1-G	40	40	40	40	
HadGEM3GC31-LL	55	55	55	50	
IPSL-CM6A-LR	33	10	10		
MIROC6	50	50	10	10	
MPI-ESM1-2-LR	50	30	30	30	
NorESM2-LM	43	23	23	20	

- 9 models
- 5 with totalO3 experiment

Forcing responses: Difference between 1980-2014 (present) and 1850-1884 (pre-industrial).

Multi-model mean: equal weight for each model.

Model Agreement: stippling when >80% models match.

Timeseries: 1850 to 2014

Trends: 1980-2014, compared with observations (OSI-SAF)

Results: time series

MMM of SIE anomalies at the annual minimum (February) and maximum (September)

- Overall decrease in all experiments, except hist-aer
- More dramatic response in September

SIE trend in February and September in the single members

historical

- Most members do **not** capture the observed trend and simulate a negative one
- ...But some show a positive trend!
- Larger spread in September

SIE trend in February and September in the single members

hist-GHG

- Very similar to the historical exp
- Larger spread for some models (wrt to historical), despite similar or lower number of members

IPSL-CM6A-LR

MPI-ESM1-2-LR

NorESM2-LM

SIE trend in February and September in the single members

hist-aer

- Very large spread!
- Both positive and negative trends,
 ~equally distributed

IPSL-CM6A-LR

MPI-ESM1-2-LR

NorESM2-LM

SIE trend in February and September in the single members

hist-totalO3

NorESM2-LM

 Mixed response, but mostly negative trend

IPSL-CM6A-LR

MPI-ESM1-2-LR

climatological sea ice edge from obs (1979-2014)

- historical & hist-GHG: similar patterns, homogeneous decrease
- hist-aer:
 regional differences,
 lack of significance
- hist-totalO3: small decrease

Increase in Weddell Sea in all experiments, but not significant.

Single models (annual mean) in hist-aer

Results: comparison with atmosphere

- historical, hist-GHG, hist-totalO3: positive SAM-like response
- hist-aer: negative SAM, also lacking significance

→ See also Ghyslaine's talk on the SAM

Courtesy of David Avisar/Chaim Garfinkel

Results: comparison with ocean

- historical, hist-GHG: warming trend
- hist-aer: slight cooling
- hist-totalO3: no net trend, but because of dipolar pattern

Summary

- In the "models' world", there is a decrease in sea ice in the present period:
 - The decrease is mostly driven by GHG ↓ ↓ ↓
 - Ozone contributes to the decrease ↓
 - Aerosols seem to have an opposite or neutral effect ↑=, but there is large uncertainty
- Sea ice response consistent with atmosphere (and ocean) responses

- It is challenging to apply these conclusions to the "real world", since most models/members fail in capturing the observed positive trend...
- Still, we can learn a lot from these experiments!