

Multidecadal Pacific
Circulation Changes in the
Large Ensemble Single
Forcing Runs

Melissa Seabrook, Doug Smith, Ted Shepherd, Buwen Dong, Nick Dunstone

Met Office/Reading University

- Trends in Pacific Jet (1979-2023)
- CMIP6 range is outside of observations.
- Increasing number of examples (Blackport&Fyfe 2022, etc)
- Must be some error in model internal variability or forced response
- Focus on forced response by using large ensembles

Patterson et al 2025

Large Ensemble Single Forcing (LESFMIP) experiments

- Hist-sol
- Hist-volc
- Hist-nat

- Hist-aer
- **Hist-GHG**
- Historical (all forcings)

Aleutian Low Variability (NPI) in natural forcing runs

- Opposite responses!
- Solar and volcanoes don't add up to the natural forcing!
- Pacific Jet latitude and Aleutian Low are closely related
- Here focus on opposite model responses

Model Differences in the Aleutian Low/ Pacific Jet Response

- Regressions against Earth Energy Imbalance Index in the natural forcings experiments
- CanESM5 poleward shift
- HadGEM3 equatorward shift

Multiple Linear Regression on Pacific Jet

	r² (EEI index, SPV,
	surface pole temp,
	200hPa equatorial temp,
hist-volc	100hPa WV)
CANESM5	0.33
HadGEM3-GC31-LL	0.43
MIROC6	0.31
MPI-ESM1-2-LR	0.34

Linear
Regression to
predict Pacific Jet
Latitude

Used Multiple

21 year means

Multiple Linear Regression on Pacific Jet

	r² (EEI index, SPV,	r² (EEI index, SPV, surface
	surface pole temp,	pole temp,
	200hPa equatorial temp,	200hPa equatorial temp,
hist-volc	100hPa WV)	100hPa WV, NINO3.4)
CANESM5	0.33	0.88
HadGEM3-GC31-LL	0.43	0.93
MIROC6	0.31	0.74
MPI-ESM1-2-LR	0.34	0.77

21 year means

- Used Multiple Linear Regression to predict Pacific Jet Latitude
- Much more variance explained when NINO3.4 is included

Regressing out ENSO Variability

Regressions against EEI Index

(hist-nat)

- Regress out

 interannual NINO3.4
 from each ensemble
 member
 (unpredictable noise)
- Models now similar

hist-nat Pacific Jet Regressed ENSO

- Before regressing out ENSO: Large model spread
- After regressing out ENSO: More model agreement

hist-nat Pacific Jet Regressed ENSO

- Before regressing out ENSO: Large model spread
- After regressing out ENSO: More model agreement
- Volcanically forced signal, agreement with observations

Historical Pacific Jet Regressed ENSO

historical

- Not as clear for historical
- Regressing out ENSO produces large increase after 1980, not seen in observations

Regressing ENSO in all single forcings

- Clearly see the hist-nat response is being driven by volcanoes
- Uptick in historical is not evident in either aerosol or GHG

Summary

- Models can have opposite responses to the same forcings!
- Aim is to understand differences and correct for them

- Regressing out ENSO from hist-nat makes the models agree
- This reveals a volcanically forced signal in agreement with observations
- Uncertainty in the equatorial pacific is important in the model jet response but perhaps not in the real world
- It is an ongoing puzzle why this approach does not work in the historical (all forcings) simulations

Thanks for listening

Any questions?

Non additivity in responses

- After regressing out ENSO experiments do not linearly add up
- Although there is an increase from 1980-present day in the addition of the single forcing runs, this does not fully explain the uptick in the historical runs
- CAVEAT: not same ensmeble members
- Make lines thicker

Regressions against EEI Index

Raw CanESM5 (50)

ENSO regressed out
CanESM5 (50)

HadGEM3-GC31-LL (60)

Tried MLR and identified a key need to include ENSO