EPESC – LEADER Science Meeting (15-18 July 2025)

WCRP
World Climate
Research Programme

APEC Climate Center, Busan, Republic of Korea

Exploring Multi-year Predictability of Terrestrial Heatwaves in Global Hotspot Regions

<u>Alexia Karwat</u>¹, June-Yi Lee^{1,2}, Yong-Yub Kim², Jeong-Eun Yun¹, and Sun-Seon Lee²

¹Research Center for Climate Sciences, Pusan National University, Busan, Republic of Korea ²IBS Center for Climate Physics, Busan, Republic of Korea

Greenland

Central America

Arabian Peninsula

Southeast Asia

Motivation

- Terrestrial heatwaves pose significant risks to ecosystems, human health, and socio-economies, with limited understanding of their multi-year predictability in relation to energy, electricity and cooling demand (IPCC AR6 report; Zhang et al. 2024)
- Prediction of statistics (e.g., frequency) over multi-year time scales remains challenging
 due to the complex interactions between internal variability, large-scale drivers, and
 local processes (Hamilton et al. 2011; Luo et al. 2020; Kim et al., 2025 preprint)
- Sources of multi-year predictability are not well understood for regional hotspots (e.g., Qasmi et al. 2020; Pyrina and Domeisen 2022; Boisseson and Balmaseda 2023)
- → Improving our understanding of the underlying mechanisms can enhance long-term heatwave forecasts, guide climate adaptation strategies, and inform proactive measures to mitigate risks in vulnerable regions

CESM2 Multi-year Climate Prediction System (CESM2-MP)

- it consists of ocean assimilations, 5-year hindcasts and uninitialized large-ensemble historical simulations (CESM2-LE) (Kim et al. 2025, preprint)
- atmospheric component: Community Atmosphere Model version 6 (CAM6) (Danabasoglu et al. 2020)
- ocean and sea ice models: Parallel Ocean Program version 2 (POP2) (Smith et al. 2010) and CICE version 5.1.2 (CICE5) (Bailey et al. 2020)
- external forcing: historical and SSP3-7.0 warming scenario based on CMIP6 (van Marle et al. 2017, Rodgers et al. 2021)
- here: 50-member CESM2 Large Ensemble

Overview of Data

- 2m air temperature (TREFHT → model / t2m in observation)
- 2m relative humidity data (RH2M in model and observation; assimilated over land)

data set original resolution common resolution hindcast (HIND) 0.94 1.25 1.25 CESM2-LE (UNIN) 0.94 1.25° x 1.25° 0.25 0.25 ERA5 AgERA5 0.1 0.1

we consider the boreal spring and summer season during 1981-2020 (daily resolution)

How can we define "Predictive Skill"?

1) Total Skill: HIND (LY1-5) anomaly vs. $OBS_{anomaly} \rightarrow compute \ correlation$

2) Skill from Forcing: UNIN vs. OBS

```
UNIN anomaly (t) = UNIN(t) - UNIN(t)_{seasonal}

OBS anomaly (t) = OBS(t) - OBS(t)_{seasonal} as above
```

3) Skill from Internal Variability: HIND (LY1-5) — LE vs. OBS — LE

```
HIND int. var. (t) = HIND anomaly (t) - UNIN (t)seasonal OBS int. var. (t) = OBS anomaly (t) - UNIN (t)seasonal
```

How can we define "Predictive Skill"?

3) Skill from Internal Variability: HIND (LY1-5) — LE vs. OBS — LE

```
HIND int. var. (t) = \text{HIND anomaly } (t) - \text{UNIN } (t) seasonal OBS int. var. (t) = \text{OBS anomaly } (t) - \text{UNIN } (t) seasonal
```

Classifying Terrestrial Heatwaves: Thermal, Dry, and Wet

Thermal Heatwave (THW) = 3 consecutive days ≥ 90th percentile of 2mT

(e.g., Perkins 2015; Domeisen et al. 2022)

Stricter criteria:

Dry Heatwave (DHW) = 3 consecutive days ≥ 90th pct. of 2mT & ≤ 33% of RH2M

Wet Heatwave (WHW) = 3 consecutive days ≥ 90th pct. of 2mT & ≥ 66% of RH2M

(e.g., Ha, Seo et al. 2022)

apply skill concept

Classifying Terrestrial Heatwaves: Thermal, Dry, and Wet

Thermal Heatwave (THW) = 3 consecutive days ≥ 90th percentile of 2mT (e.g., Perkins 2015; Domeisen et al. 2022)

Stricter criteria:

Dry Heatwave (DHW) = 3 consecutive days ≥ 90th pct. of 2mT & ≤ 33% of RH2M

Wet Heatwave (WHW) = 3 consecutive days ≥ 90th pct. of 2mT & ≥ 66% of RH2M

(e.g., Ha, Seo et al. 2022)

apply skill concept

Hypothesis:

Thermal and humidity-driven heatwave types enable predictable cooling demand extremes across Northern Hemisphere hotspots

Cooling Degree Days and Cooling Demand

Dry Cooling Degree Days = The sum of degrees by which **daily temperatures** exceed 22°C, reflecting cooling demand.

$$CDD_{dry} = T_{2m,mean} - T_{2m,base}$$

(e.g., Ember Energy UK)

Wet Cooling Degree Days = The sum of degrees by which **daily wet-bulb temperatures** exceed 24°C, reflecting cooling demand.

$$CDD_{wet} = T_{wb,mean} - T_{wb,base}$$

Cooling Demand Index = α x heatwave frequency_{type} + β x CDD_{type}

→ apply skill concept

Cooling Degree Days and Cooling Demand

Dry Cooling Degree Days = The sum of degrees by which **daily temperatures** exceed 22°C, reflecting cooling demand.

 $CDD_{dry} = T_{2m,mean} - T_{2m,base}$

(e.g., Ember Energy UK)

Wet Cooling Degree Days = The sum of degrees by which **daily wet-bulb temperatures** exceed 24°C, reflecting cooling demand.

$$CDD_{wet} = T_{wb,mean} - T_{wb,base}$$

Cooling Demand Index = αx heatwave frequency_{thermal} + βx CDD_{dry}

→ apply skill concept

Anomaly of Thermal Heatwave Frequency (1981-2020, JJA)

Anomaly of Dry Heatwave Frequency (1981-2020)

Anomaly of Wet Heatwave Frequency (1981-2020)

Skill from External Forcing: Frequency of Thermal Heatwaves & Trend in Z200 (JJA)

Anomaly Correlation Coefficient, 1981-2020, UNIN and ERA5

- Heatwave frequency anomalies show a strong correlation with atmospheric circulation anomalies (Z200)
- Higher correlation for hotspots in tropics and subtropics (e.g., Central America, Arabian Peninsula, US Southwest etc.)
- Anthropogenic influence rather dominant across many regions

Heatwaves, Cooling Degree Days & Cooling Demand (JJA)

Can we predict **Cooling Demand** based on heatwave frequency and Cooling Degree Days (CDDs) information?

Anomaly Correlation Coefficient of Thermal Heatwave Frequency 1981-2020 HIND and ERA5

Heatwaves, Cooling Degree Days & Cooling Demand (JJA)

Can we predict **Cooling Demand** based on heatwave frequency and Cooling Degree Days (CDDs) information?

Anomaly Correlation Coefficient of Thermal Heatwave Frequency 1981-2020 HIND and ERA5

Heatmap of the Anomaly of CDD_{drv}, South Asia

Heatwaves, Cooling Degree Days & Cooling Demand (JJA)

Can we predict **Cooling Demand** based on heatwave frequency and Cooling Degree Days (CDDs) information?

Anomaly Correlation Coefficient of Thermal Heatwave Frequency 1981-2020 HIND and ERA5

Heatmap of the Anomaly of CDD_{drv}, South Asia

Cooling Demand, South Asia

How skillful are the CDD_{dry} predictions?

Hotspot	MAM	JJA	Difference
US Southwest	87.5%	47.5%	Much higher in MAM (+40%)
Central America	72.5%	72.5%	Same in both seasons
Greenland	-	-	No data
Spain	82.5%	62.5%	Higher in MAM (+20%)
North Africa	62.5%	60%	Slightly higher in MAM (+2.5%)
Arabian Peninsula	57.5%	75%	Higher in JJA (+17.5%)
China-Mongolia	70%	67.5%	Slightly higher in MAM (+2.5%)
South Asia	72.5%	85%	Higher in JJA (+12.5%)
Korea-Japan	85%	42.5%	Much higher in MAM (+42.5%)

How skillful are the Cooling Demand predictions?

Hotspot	MAM	JJA	Difference
US Southwest	82.5%	80%	Slightly higher in MAM (+2.5%)
Central America	85%	80%	Slightly higher in MAM (+5%)
Greenland	82.5%	82.5%	Same in both seasons
Spain	70%	67.5%	Slightly higher in MAM (+2.5%)
North Africa	65%	62.5%	Slightly higher in MAM (+2.5%)
Arabian Peninsula	70%	90%	Much higher in JJA (+20%)
China-Mongolia	75%	57.5%	Higher in MAM (+17.5%)
South Asia	77.5%	87.5%	Higher in JJA (+10%)
Korea-Japan	87.5%	62.5%	Much higher in MAM (+25%)

Overall, most hotspots have slightly higher skill in MAM than in JJA, except for the Arabian Peninsula and South Asia, where skill is higher in JJA. Korea-Japan and China-Mongolia show particularly strong MAM advantages.

Summary & Conclusions

Thermal Heatwaves and dry CDDs are predictable on multiyear timescales:

- → External forcing is a strong driver of multi-year predictability of heatwaves in many hotspot regions.
- → Dry heatwaves are more predictable since trends are stronger, more widespread, and better captured in the model: e.g., the US Southwest, which has been affected by severe droughts and wildfires in recent years.
- → Wet heatwaves are less predictable, since trends are weaker and less consistent, with regional differences and greater uncertainty. Particularly relevant for heat stress predictability across South(east) Asia and Central America.
- → Internal variability is limited to 1-2 years and constraint by ENSO predictability (12-14 months in CESM2-MP).
- → **Skilful prediction of the cooling demand during THWs** helps prevent power outages and improve energy management.

Outlook

- Examine prediction skills of CDD_{wet} + cooling demand from strictly dry/wet heatwaves
- Explore concept of sudden day2day temperature changes
- Correlation with (NH) blocking
- Linkage with SST anomalies / Marine Heatwaves (Karwat et al. 2025, under review)
- Urban Heat Island (UHI) effect
- Consider the predictability of other extremes in the CESM2-MP and hybrid/AI model approaches,
 e.g., for drought, malaria, heavy precipitation and storm prediction.

Thank you very much for your attention!

감사합니다

Contact:

alexia.karwat@pusan.ac.kr

Appendix

Spherical Convolutional Wasserstein Distance (SCWD)

- SCWD is a similarity measure to validate climate models by comparing the distance between a climate model and the observed data (Garrett et al. 2024)
- concept based on the global mean Wasserstein distance (Vissio et al. 2020)
- SCWD evaluates the distributions of spatial fields while taking into account localized extreme events:
 - a convolution slicer takes a weighted mean of data around each location to calculate local distances that are then incorporated in the computation of the SCWD (Garrett et al. 2024)
- low values indicate that the climate model is similar to the observation
- → we define a critical SCWD = 3 as the distance where the climate model is considerably different from the observation

Climate Model Validation: 2m Temperature

UNIN TREFHT vs ERA5 Reanalysis t2m

Spherical Convolutional Wasserstein Distance (SCWD)

1981-2020

UNIN and ERA5

→ high global similarity up to 3

→ more differences over, e.g., central North America, West Antarctica, and Northwest-central Siberia (up to 5)

Climate Model Validation: 2m Relative Humidity

UNIN RH2M vs AgERA5 Reanalysis RH2M

Spherical Convolutional Wasserstein Distance (SCWD)

1981-2020

UNIN and AgERA5

- → high similarity over most regions except for Antarctica
- → similar to MAM, with slightly higher similarity over North Africa and Siberia

Anomaly of Thermal Heatwave Frequency (1981-2020, MAM)

Skill from External Forcing: Frequency of Thermal Heatwaves & Trend in Z200 (MAM)

Anomaly Correlation Coefficient, 1981-2020, UNIN and ERA5

- Heatwave frequency anomalies show a strong correlation with atmospheric circulation anomalies (Z200)
- Higher correlation for hotspots in tropics and subtropics (e.g., Central America, Arabian Peninsula, US Southwest etc.)
- Anthropogenic influence rather dominant across many regions

Heatwave Frequency vs Z200 Anomalies (MAM)

Heatwave Frequency vs Z200 Anomalies (JJA)

-40

Heatwaves, Cooling Degree Days & Cooling Demand (MAM)

Can we predict **Cooling Demand** based on heatwave frequency and Cooling Degree Days (CDDs) information?

Anomaly Correlation Coefficient of Thermal Heatwave Frequency 1981-2020 HIND and ERA5

Heatmap of the Anomaly of CDD_{dry}, South Asia

Cooling Demand, South Asia

Heatmaps of the Anomaly of CDD_{dry} (JJA)

Heatmaps of the Anomaly of CDD_{dry} (MAM)

Can we predict **Cooling Demand** during JJA?

Determined only by THW frequency

Below Normal Slightly Elevated

Cooling Demand

Extreme

Below Normal Slightly Elevated

Cooling Demand

Extreme

Cooling Demand

Can we predict **Cooling Demand** in MAM?

Determined only by THW frequency

Skill from Internal Variability: Frequency of Thermal Heatwaves (JJA)

Anomaly Correlation Coefficient / JJA 1981-2020 / HIND-LE and ERA5-LE

Skill from Internal Variability: Frequency of Thermal Heatwaves (MAM)

Anomaly Correlation Coefficient / MAM 1981-2020 / HIND-LE and ERA5-LE

Sudden Day2Day Temperature Spikes: Warm Shock Frequency (ERA5, 1981-2020)

- previous statistics (THW freq., CDDs) focus on sustained heat and cumulative thermal load, however, "rapid temperature flips" (Wu et al. 2025) may also pose risks to power grid reliability
- short-term temperature volatility, if predictable, may signal the start of a heatwave
- we choose a threshold of $\Delta t2m \ge 5^{\circ}C$ as most suitable for use in early warning systems

 \rightarrow very few days of "rapid temperature flips" in the NH \rightarrow high predictability in CESM2-MP?