Historical Hadley circulation changes: resolving the modelreanalysis discrepancy

In collaboration with Janni Yuval (Google) and Kevin Grise (U. Virginia)

While CMIP5 models show a weakening of the circulation, all reanalyses show a strengthening over the last four decades

While CMIP5 models show a weakening of the circulation, all reanalyses show a strengthening over the last four decades

- Large uncertainty in recent Hadley cell changes
 - What is role of human emissions in recent Hadley cell changes?
 - How confident we are in tropical climate projections?

Lower branch of the HC

Zonal and time mean zonal momentum eq:

$$f\overline{v} \approx r\overline{u}$$

Lower branch of the HC

Zonal and time mean zonal momentum eq:

$$f\overline{v} \approx r\overline{u}$$

Vertical integral from the surface to 500mb:

$$f\Psi_{500} \propto -r\overline{u_{\rm sfc}}$$

Lower branch of the HC

Zonal and time mean zonal momentum eq:

$$f\overline{v} \approx r\overline{u}$$

Vertical integral from the surface to 500mb:

$$f\Psi_{500} \propto -r\overline{u_{\rm sfc}}$$

Near surface

Zonal and time mean of the meridional momentum eq Frictional-geostrophic balance:

$$f\overline{u_{\rm sfc}} \approx -\frac{1}{\rho} \frac{\partial \overline{\rm PSL}}{\partial y} - r\overline{v_{\rm sfc}}$$

Lower branch of the HC

Zonal and time mean zonal momentum eq:

$$f\overline{v} \approx r\overline{u}$$

Vertical integral from the surface to 500mb:

$$f\Psi_{500} \propto -r\overline{u_{\rm sfc}}$$

Near surface

Zonal and time mean of the meridional momentum eq Frictional-geostrophic balance:

$$f\overline{u_{\rm sfc}} \approx -\frac{1}{\rho} \frac{\partial \overline{\rm PSL}}{\partial y} - r\overline{v_{\rm sfc}}$$

$$\Psi_{500} \propto \frac{1}{|f|} \frac{\partial \mathrm{PSL}}{\partial y}$$

 The meridional gradient of sea-level pressure in models adequately captures the changes in the Hadley cell edge in recent and coming decades

 The meridional gradient of sea-level pressure in models adequately captures the changes in the Hadley cell edge in recent and coming decades

- Emergent constraint analysis
- Exploit the strong linear relation, which stems from the momentum equations, between the Hadley cell strength and sea level pressure gradient
- Use the observed trend to constrain the observed Hadley cell strength trend

Observations CMIP6

Emergent constraint analysis

- Based on sea level pressure measurements, the Hadley cell has been weakening in recent decades
- The consistent weakening of the circulation as inferred from observations and climate models increases our confidence in the model-projected weakening of the flow in coming decades

Observations CMIP6

Could the recent weakening of the Hadley circulation be attributed to anthropogenic emissions?

- Calculate, for each year, the observed trend since 1960
- Estimate the probability of having such a trend across CMIP6 simulations with (P_{AE}) and without (P_{NAT}) anthropogenic emissions

Could the recent weakening of the Hadley circulation be attributed to anthropogenic emissions?

- Calculate, for each year, the observed trend since 1960
- Estimate the probability of having such a trend across CMIP6 simulations with (P_{AE}) and without (P_{NAT}) anthropogenic emissions
- Since the early 00's FAR has exceeded a value of 0.99

Could the recent weakening of the Hadley circulation be attributed to anthropogenic emissions?

- Calculate, for each year, the observed trend since 1960
- Estimate the probability of having such a trend across CMIP6 simulations with (P_{AE}) and without (P_{NAT}) anthropogenic emissions
- Since the early 00's FAR has exceeded a value of 0.99
- We have high confidence (of more than 99%) that the recent weakening is attributed to anthropogenic emissions
- Human emissions have increased the probability of observing such a trend by a factor of ~100 over this period

Lower branch of the HC

Zonal and time mean zonal momentum eq:

$$f\overline{v} \approx r\overline{u}$$

Vertical integral from the surface to 500mb:

$$f\Psi_{500} \propto -r\overline{u_{\rm sfc}}$$

Near surface

Zonal and time mean of the meridional momentum eq Frictional-geostrophic balance:

$$f\overline{u_{\rm sfc}} \approx -\frac{1}{\rho} \frac{\partial \overline{\rm PSL}}{\partial y} - r\overline{v_{\rm sfc}}$$

$$\Psi_{500} \propto \frac{1}{|f|} \frac{\partial \mathrm{PSL}}{\partial y}$$

The Hadley cell edge is projected to shift poleward by the end of this century

 The meridonal gradient of sea-level perssure in models adequatley captures the changes in the Hadley cell strength in recent and coming decades

- Emergent constraint analysis
- Exploit the strong linear relation, which stems from the momentum equations, between the Hadley cell edge and sea level pressure gradient
- Use the observed trend to constrain the observed Hadley cell edge trend

Emergent constraint analysis

 Based on sea level pressure measurements, the Hadley cell edge has been shifting poleward in recent decades

Emergent constraint analysis

- Based on sea level pressure measurements, the Hadley cell edge has been shifting poleward in recent decades
- The consistent shift of the circulation as inferred from observations, reanalyses, and climate models increases our confidence in the historical and model-projected shift of the flow

Could the recent poleward shift of the Hadley circulation be attributed to anthropogenic emissions?

Fractional Attributional Risks (FAR) analysis

 Estimate the probability of having such a trend across CMIP6 simulations with (P_{AE}) and without (P_{NAT}) anthropogenic emissions

Could the recent poleward shift of the Hadley circulation be attributed to anthropogenic emissions?

- By 2014, FAR has reached a value of 0.8
- There is an ~80% chance that the recent shift is attributed to anthropogenic emissions
- Human emissions have increased the probability of observing such a trend by a factor of ~5 over this period

Could the recent poleward shift of the Hadley circulation be attributed to anthropogenic emissions?

- By 2014, FAR has reached a value of 0.8
- There is an ~80% chance that the recent shift is attributed to anthropogenic emissions
- Human emissions have increased the probability of observing such a trend by a factor of ~5 over this period
- Regionally, the impact of anthropogenic emissions are evident over the Pacific and Atlantic basins

Main take-home messages

- Observation-based weakening of the circulation over recent decades
 - Attributed to anthropogenic emissions
 - Consistent with models but not with reanalyses
 - Chemke and Yuval, Nature 2023

Main take-home messages

- Observation-based weakening of the circulation over recent decades
 - Attributed to anthropogenic emissions
 - Consistent with models but not with reanalyses
 - Chemke and Yuval, Nature 2023

- Observation-based poleward shift of the Hadley cell edge over recent decades
 - Likely attributed to anthropogenic emissions
 - Consistent with models and reanalyses
 - Chemke and Grise, 2025 (in revisions)

Main take-home messages

- Observation-based weakening of the circulation over recent decades
 - Attributed to anthropogenic emissions
 - Consistent with models but not with reanalyses
 - Chemke and Yuval, Nature 2023

- Observation-based poleward shift of the Hadley cell edge over recent decades
 - Likely attributed to anthropogenic emissions
 - Consistent with models and reanalyses
 - Chemke and Grise, 2025 (in revisions)