

The main direct radiative effect of large explosive volcanic eruptions is to temporarily enhance the planetary albedo, resulting in a net surface cooling

Framing the problem /1

scopus search results

Framing the problem /2

What can we still learn from Pinatubo and other eruptions during the *historical* period?

How can we exploit LES/SMILEs approaches?

Framing the problem /2

The data: the volc-hist ensemble

Volcanic-forcing only simulations of the historical period (1850-XXXX)

Model	Ensemble size	ipf	End year
ACCESS-ESM1-5	10	i1p1f1	2014
CanESM5	25	i1p2f1	2020
CMCC-CM2-SR5	10	i1p1f1	2020
GISS-E2-1-G	20	i1p3f1	2014
HadGEM3- GC31-LL	50	i1p1f3	2020
MIROC6	10	i1p1f1	2020
MPI-ESM1-2-LR	30	i1p1f1	2014
NorESM2-LM	20	i1p1f1	2020

Are these *good* **S**ingle-**M**odel Initial-condition *Large* **E**nsembles?

1940

time (year)

1960

1980

2000

2020

-0.6

-0.8

1860

1880

1900

1920

First look

→ Masks different climatologies!
Annual means!

→ Masks different climatologies!
Annual means!

Consistent cumulative effect? Ocean heat content changes? Why ACCESS and MIROC?

Consistent cumulative effect? Ocean heat content changes? Why ACCESS and MIROC?

Persistent cooling post-Agung

^{*} need to double check

Response to Pinatubo

ACCESS-ESM1-5 hist-volc
CanESM5 hist-volc
NorESM2-LM hist-volc
GISS-E2-1-G hist-volc
HadGEM3-GC31-LL hist-volc
MIROC6 hist-volc
MPI-ESM1-2-LR hist-volc

GL: global; **TR**: tropics (30S-30N); **NH**: northern extratropics (30-90N); **SH**: southern extratropics (30-90S)

Squares at bottom: model significantly different from rest of ensemble (ranksum)

Response to Pinatubo vs response to Agung

GL: global; **TR**: tropics (30S-30N)

Squares at bottom: model significantly different from rest of ensemble

CMIP6 experiments with Pinatubo

	DAMIP hist-volc	VolMIP volc-pinatubo- full
forcing	GloSSAC version 1.0 or 1.1 (?)	GloSSAC version 1.0
Initial conditions (climate background)	historical volcanic forcing only	piControl
Initial conditions (sampling)	Unsupervised (transient)	Supervised (ENSO, NAO)
Ensemble size	Variable (from 20 to 30)	27

CanESM5 MPI-ESM-1-2LR GISS-E2-1-G

MPI-ESM1-2-LR IC or ozone in hist-volc

But, ...

CanESM5 volmip CanESM5 hist-volc

MPI-ESM-LR volmip
MPI-ESM1-2-LR hist-volc

GISS-E2.1-G volmip GISS-E2-1-G hist-volc

GL: global; **TR**: tropics (30S-30N)

Squares at bottom: volmip significantly

different from hist-volc

Ensemble means:

volc-pinatubo

+ hist-volc

dots: individual realizations

CanESM5 volmip CanESM5 hist-volc

MPI-ESM-LR volmip MPI-ESM1-2-LR hist-volc

GISS-E2.1-G volmip GISS-E2-1-G hist-volc

*wrt 1986-1990 mean

Ensemble means:

volc-pinatubo

+ hist-volc

dots: individual realizations

CanESM5 volmip CanESM5 hist-volc

MPI-ESM-LR volmip MPI-ESM1-2-LR hist-volc

GISS-E2.1-G volmip GISS-E2-1-G hist-volc

*wrt 1986-1990 mean

Initial conditions

Ensemble means:

volc-pinatubo

+ hist-volc

dots: individual realizations

CanESM5 volmip CanESM5 hist-volc

MPI-ESM-LR volmip MPI-ESM1-2-LR hist-volc

GISS-E2.1-G volmip GISS-E2-1-G hist-volc

*wrt 1986-1990 mean

Ensemble means:

volc-pinatubo

+ hist-volc

dots: individual realizations

CanESM5 volmip CanESM5 hist-volc

MPI-ESM-LR volmip
MPI-ESM1-2-LR hist-volc

GISS-E2.1-G volmip GISS-E2-1-G hist-volc

Ensemble means:

volc-pinatubo

+ hist-volc

dots: individual realizations

CanESM5 volmip CanESM5 hist-volc

MPI-ESM-LR volmip
MPI-ESM1-2-LR hist-volc

GISS-E2.1-G volmip GISS-E2-1-G hist-volc

AT THIS POINT, I **WOULD SAY AT** BEST IT'S INCONCLUSIVE.

Community paper (lead: Davide, Stergios)

Focus on:

- Agung/Agung vs Pinatubo response
- volc-hist vs VolMIP

Proposed work (EPESC/LEADER output) (in progress?)

- Response to high-latitude eruptions (lead: Hera Guðlaugsdóttir)
- Forcing uncertainty vs internal variability (lead: Ewa Bednarz)
- Solar + volcanic forcing (lead: Stergios)
- Indian summer monsoon (lead: Stergios)
- Energy balance, 2-layer model (lead: Matt Toohey)
- AMOC response/phasing (lead: Davide)

Proposed work (possible EPESC/LEADER extension)

CMIP7-VolMIP "volc-Duo-Forcer" (*volc-DuoForc*) climate-response experiment (lead: Graham Mann)

- → scaled-up Hunga-Tonga sWV & aerosol (5x) → test how strong long-wave and shortwave volcanic forcings combine and compensate)
- → volc-pinatubo-full (VolMIP) design: Can we extend this under LESFMIP approach?

Dynamical responses (post-eruption winter warming)

Top-down mechanism(s)

Pinatubo 1992 minus (1986-1990), DJF, ensemble mean

Large differences in high-latitude stratospheric warming

Authors: Chaim Garfinkel, David Avisar

-0.2

-0.4

a) Near-surface air temperature anomaly, GL

0.2

pre-eruption anomaly (DJF)

0.4

0.6

Global mean near-surface air temperature (tas, GL)

Author: Davide Zanchettin