

Budgets for Process Studies:
A-RIP and LESFMIP Perspectives

Jonathon S. Wright • Shenglong Zhang • Yuanrui Chen Department of Earth System Science, Tsinghua University

APARC Reanalysis Intercomparison Project Contributions welcome!

Topics include:

- Monsoons and extreme events
- Teleconnections
- Stratosphere-troposphere coupling
- Polar vortex dynamics
- Atmospheric composition
- Aerosols and air quality
- Contact me: jswright@tsinghua.edu.cn

Joint special issue in ACP & WCD

The SPARC Reanalysis Intercomparison Project (S-RIP) Phase 2 (ACP/WCD inter-journal SI)

Editor(s): ACP co-editors | Coordinators: Gabriele Stiller and Peter Haynes | Co-organizers: Gloria Manney, Jonathon Wright, and Masatomo Fujiwara

Special issue jointly organized between Atmospheric Chemistry and Physics and Weather and Climate Dynamics

what a reanalysis is: a best estimate

what a reanalysis is not: observations

The Problem:

In a reanalysis grid cell, energy changes due to:

- Resolved transport (advection)
- 2. Parameterized physics (convection, radiation...)
- 3. Data Assimilation

Energy is not conserved!

what a reanalysis is not: conservative

what a reanalysis is: complete

A Solution:

$$s = c_p T + g z$$

residual

The standard approach using reanalysis products (Yanai et al. 1973):

$$Q_1 \equiv \frac{\partial \overline{s}}{\partial t} + \overline{\nabla \cdot (\mathbf{v}s)} + \frac{\partial \overline{\omega s}}{\partial p} = Q + \frac{\partial}{\partial p} \overline{s'\omega'}$$

But reanalyses now support:

$$rac{\partial \overline{s}}{\partial t} +
abla \cdot (\overline{\mathbf{v}}\overline{s}) + rac{\partial \overline{\omega}\overline{s}}{\partial p} = Q_{\mathrm{phy}} + Q_{\mathrm{asm}} + rac{\partial}{\partial p} \overline{s'\omega'}$$
 compute transports from reanalysis fields

We have constructed similar budgets for specific humidity, momentum, ozone...

Account for assimilation effects

Example: Southern Amazon

Where the rainforest summons the rainy season

- 1. Rainforest ET exported during dry season
- 2. Late dry season increase in ET and $T_{\rm sfc}$
- 3. Shallow convection preconditioning
- 4. Deep convection moisture pump and wet season onset

The lower troposphere above the Southern Amazon rainforest is too dry in MERRA-2, requiring a large assimilation increment inwater vapor to support the dry-to-wet season transition.

Increments can help to:

- Identify <u>where</u>, <u>when</u>, and (sometimes) <u>why</u> reanalyses differ from obs, models, other reanalyses...
- Improve budget allocation and process understanding
- Distinguish real trends from changes in assimilated obs
- Enrich trajectory-based source attribution
- Clarify assimilation effects around extreme events
- Deepen reanalysis-model comparisons

Harbinger of rains to come

Regional-scale deep convection

Harbinger of rains to come

110°E-120°E (a) U850 (b) OLR, UV850 40°N 40°N Onset often defined 300 30°N by reversal of lower 30°N 280 5 tropospheric zonal 260 E 240 A 220 O 20°N winds 10°N -6 200 10°S 10°S 65 pentad pentad (c) PRE (d) MSE 40°N 40°N 30°N 30°N Large increase in 20°N rainfall in late April 10°N to early May 10°S 65 41 57 pentad pentad Sharp increase in moist static energy

Regional-scale deep convection

causes decrease in OLR

Vertically-integrated dry static energy equation:

$$c_p \frac{\partial \langle T \rangle}{\partial t} + \nabla_h \cdot \langle \mathbf{v} s \rangle \approx L_v P + Q_R + H$$

Vertically-integrated dry static energy equation:

$$c_p \frac{\partial \langle T \rangle}{\partial t} + \nabla_h \cdot \langle \mathbf{v} s \rangle \approx L_v P + Q_R + H$$

Target is vertically-integrated DSE flux divergence.

Vertically-integrated dry static energy equation:

$$c_p \frac{\partial \langle T \rangle}{\partial t} + \nabla_h \cdot \langle \mathbf{v} s \rangle \approx L_v P + Q_{\mathrm{R}} + H$$

Target is vertically-integrated DSE flux divergence. Which terms matter?

$$c_p \frac{\partial \langle T \rangle}{\partial t} + \nabla_h \cdot \langle \mathbf{v} s \rangle \approx L_v P + Q_{\mathrm{R}} + \mathbf{H}$$

Changes in sensible heat flux are small because the surface is wet and seasonal variations in SST are small

Vertically-integrated dry static energy equation:

$$c_p \frac{\partial \langle T \rangle}{\partial t} + \nabla_h \cdot \langle \mathbf{v} s \rangle \approx L_v P + Q_{\mathrm{R}}$$

Target is vertically-integrated DSE flux divergence. Which terms matter?

$$Q_{\rm R} = Q_{\rm LW} + Q_{\rm SW}$$

Column-integrated shortwave heating changes little if changes in surface flux balance changes in TOA flux

Vertically-integrated dry static energy equation:

$$c_p \frac{\partial \langle T \rangle}{\partial t} + \nabla_h \cdot \langle \mathbf{v}s \rangle \approx L_v P + Q_{\mathrm{LW}}$$

Target is vertically-integrated DSE flux divergence. Which terms matter?

$$Q_{\rm LW} = \left(F_{\rm LW\uparrow}^{\rm sfc} - F_{\rm LW\uparrow}^{\rm TOA} \right)$$

Net surface LW flux should change little due to small changes in SST and large surface air humidity.

Precipitation [mm d"

Vertically-integrated dry static energy equation:

$$c_p \frac{\partial \langle T \rangle}{\partial t} + \nabla_h \cdot \langle \mathbf{v} s \rangle \approx L_v P - \text{OLR}$$

Target is vertically-integrated DSE flux divergence. Which terms matter?

$$c_p \frac{\partial \langle T \rangle}{\partial t} + \nabla_h \cdot \langle \mathbf{v} s \rangle \approx L_v P - \text{OLR}$$

Small Coriolis term means only very large (~10,000 km) circulations can accumulate available potential energy

Vertically-integrated dry static energy equation:

$$\nabla_h \cdot \langle \mathbf{v} s \rangle \approx L_v P - \text{OLR}$$

We can track the initiation and variability of the monsoon overturning circulation from precipitation and OLR, both of which are readily observable!

First pentad for which:

- Pentad mean and slow annual cycle both exceed the median
- 2. Subsequent local maximum exceeds the 75th percentile
- 3. No pentad mean between onset and subsequent local maximum falls below the median
- 4. Annual cycle time series consistently increases from onset to its peak

Application:

South China Sea Summer Monsoon

Vertically-integrated dry static energy equation:

 $\nabla_h \cdot \langle \mathbf{v} s \rangle \approx L_v P - \text{OLR}$

- Energy conversion drives the monsoon
- Moisture flux convergence sustains it

The residual (data assimilation) has a significant negative correlation with energy conversion

In 2000, all methods identified the same onset:

Clear initiation of the wet season by a strong ISV event

In 2009, our method identifies a much earlier onset date than most approaches:

- Sustained large-scale transition occurred earlier than 25 April (pentad 24)
- Early onset is consistent with our target criteria
- Many methods disallow onset before pentad 24; in our approach, the slow annual cycle criterion eliminates early transient events without enforcing a strict cutoff

In 2019, our method identifies a much later onset date than U850-based approaches:

- Transient event coincides with onset identified by CMA and others
- Energy conversion, DSE divergence, and moisture convergence were not sustained
- Later onset consistent with our target criteria, but room for disagreement

Applying this approach to large ensembles takes just seconds

- Composites for five members of each SF scenario in E3SM
- Agrees well with ERA5 in dry-to-wet transition
- Overestimates LvP-OLR in wet season
- No clear forced signal in magnitude of L_vP-OLR
- Further work needed to assess intraseasonal & interdecadal variability

- Model simulates later onset than observed
- Ensemble spread shows signs of low-frequency variability
- Single-forcing experiments suggest aerosol forcing advances onset

Summary: South China Sea Summer Monsoon

- Analysis of the vertically-integrated dry static energy budget yields a new index for the South China Sea summer monsoon overturning circulation
- Required variables are both observable and widely available as daily means for LESFMIP
- Greater year-to-year consistency sharpens focus on critical transitions (e.g. monsoon onset) in composite analysis and boosts confidence in low-frequency signal
- Composites also highlight the central role of intraseasonal variability in the SCSSM can models capture this?
- Direct links to upper-level divergence may be useful for exploring monsoon teleconnections
- Data assimilation in ERA5 acts to damp the impacts of variations in diabatic heating on the monsoon circulation – implications for extremes?