Crown copyright **Doug Smith** # Key messages Climate models can have opposite responses to the same forcings → they can't all be right! Climate models may underestimate the true forced response Not accounting for model errors could leave society unprepared for impending extremes ### Irreducible internal variability? Opposite sign of NAO trends for 2016-2045 Projections use the same climate model differing by tiny perturbations to initial state Irreducible uncertainty due to unpredictable internal variability (?) #### Models fail to capture North Atlantic trends **Trends 1951-2020** Obs outside model range (303 members) Similar patterns but obs much stronger Models may have errors! \rightarrow possible underestimation of forced response? Taking models at face value might not be the best approach... # Irreducible internal variability? **CMIP5 + CMIP6 decadal predictions** Almost no signal in ensemble mean (red curve) Irreducible internal variability if models taken at face value BUT this can be tested... Observed temperature anomaly Forecast member 3 Forecast member 670 ### Forecast signal is much too weak Ensemble mean is highly correlated with obs (r = 0.79) Should explain 62% of observed variability Magnitude of ensemble mean variability is inconsistent with correlation ## Signal to noise paradox Paradox: models predict the real world better than themselves despite perfectly representing themselves Members NOT alternate realisations of obs Need a very large ensemble to extract the predictable signal Undermines the basis of ensembles ## Quantifying the error #### Ratio of predictable components (RPC) **Observations: Predictable Component PC >= r (anomaly correlation)** Models: PC = $$\frac{\sigma_{ensemble mean}}{\sigma_{ensemble member}}$$ Ratio of predictable components (RPC) >= $$\frac{r}{\sigma_{ensemble mean}/\sigma_{ensemble members}}$$ RPC should be one RPC > 1 shows the signal to noise error ## Quantifying the error # A key issue #### **Error in magnitude of signal (RPC)** Wherever there is skill the modelled signals are too small! # Opposite model responses!! 31-year NAO Historical + ssp245 Full range of uncertainty! MIROC6, UKESM1 significantly correlated with obs But very different projections # Regression between EEI and U (31 year) Climate responds to bring Earth's Energy Imbalance (EEI) back to equilibrium Similar horseshoe pattern increase Stippled where significantly opposite **CanESM5** → **poleward shift** **CNRM-CM6-1** → equatorward shift # Regression between EEI and T (31 year) Positive energy imbalance → troposphere warming, thermal gradient at 200 hPa - Magenta dot = jet centroid at 200 hPa - Green dot = hygropause latitude at 200hPa (diagnosed by water vapour contour) CanESM5 → hygropause latitude poleward of jet → poleward shift **CNRM-CM6-1** → hygropause latitude equatorward of jet → equatorward shift **Constraint** → hygropause latitude relative to jet # **Exploiting model differences** #### Standard multi-model mean - → no correlation with obs - → decadal variability not externally forced # **Exploiting model differences** - → no correlation with obs - → decadal variability not externally forced #### **Constrained** - → high correlation with obs - → decadal variability is externally forced But subject to signal to noise paradox → scale by ~4 times # Summary Wherever decadal predictions of atmospheric circulation are skilful the signals are too weak - → need very large ensembles to extract predictable signals - → need to boost the forecast signal - → also true for long term NAO projections Models show very different (even opposite!) responses to the same forcings – they can't all be right! Accounting for model differences and errors reveals externally forced NAO variability and projections to unprecedented levels - → missed if models are taken at face value - → we should not be surprised by this it would be a miracle if models simulated a perfect signal to noise ratio! Not accounting for model errors could leave society unprepared for impending extremes ## **Extra slides** # Explaining model differences 16 hist-nat models (with at least 3 ensemble members) Jet shift at 200 hPa related to EEI Significant correlation across models with hygropause latitude relative to jet (r = 0.62 p = 0.01) Models underestimate hygropause latitude relative to jet - → real world poleward shift - → greater than models #### Forecast signal is MUCH too weak NAO: Forecast years 2 to 9 Ratio of predictable components RPC = 11 Signal is an order of magnitude too weak in climate model ensemble Need 100 times the number of ensemble members to extract the signal # Not overcome by scaling $$T = T_{DYN} + T_{THERMO} + \varepsilon$$ Real world: T_{DYN} >> T_{THERMO} Ensemble mean: $T_{DYN} \ll T_{THERMO}$ because NAO signal too small Scaling retains the incorrect ratio T_{DYN}/T_{THERMO} Can be overcome by selecting ensemble members with correct magnitude of NAO Standard D&A approach will not work Need to look at models in new ways #### Mechanism Hovmuller plots of rolling temperature at 200hPa anomalies from preceding 30-year mean (multimodel mean) Tropical cooling following volcanic eruptions → minimum ~1990 (Agung+El Chichon+Pinatubo) Greenhouse gas warming → minimum ~1960 $\frac{\partial \overline{T}}{\partial \phi}$ at jet latitude (35N) increases under SSP5-8.5 **But reduces with mitigation** #### Models can have opposite responses!! NAO response to natural forcings (solar + volcanic) 31-year rolling means 50 members CanESM5 10 members CNRM-CM6-1 → potential role for solar and volcanic forcings? #### **BUT opposite responses:** **CanESM5** r = 0.67 p < 0.01 **CNRM-CM6-1** r = -0.48 p < 0.01