

Tropospheric and Stratospheric Temperature Trends from Observations

A. K. Steiner¹, M. Stocker¹, F. Ladstädter¹, S. Po-Chedley², and the APARC ATC Activity³

¹ Wegener Center for Climate and Global Change, University of Graz, Austria;

² LLNL, USA; ³WCRP APARC Activity on Atmospheric Temperature Changes

andi.steiner@uni-graz.at

WCRP EPESC - LEADER Science Meeting, Busan, Republic of Korea, 14 - 18 July 2025

Atmospheric Temperature Observations

Radiosondes on weather balloons

- Long time series since 1950s
- High vertical resolution
- Limited spatial coverage, observations mostly over land
- Instrument changes, homogenization

Atmospheric Temperature Observations

Nadir sounders

Earth's radiance at microwave or infrared frequencies

- Long time series since 1979
- Need calibration, corrections
- Good horizontal coverage globally
- Low vertical resolution due to Layer average temperatures
- Merged timeseries
- Stratospheric Sounding Unit (SSU): SSU-MLS, SSU-AMSU
- Microwave Sounding Unit (MSU) and Advanced MSU merged timeseries

Atmospheric Temperature Observations

Limb sounding

GNSS Radio Occultation (GNSS RO)

- Long-term stability, no inter-mission calibration
- Global coverage
- High vertical resolution
- Low structural uncertainty in the UTLS
- Since 2002, now > 20 years of measurements available

Microwave Limb Sounder (MLS)

- Global coverage
- Vertical resolution about 3–8 km
- Since 2004/08 to present (soon reaching eol)

(Scherllin-Pirscher et al. JCLI 2021) (Steiner et al., AMT 2020)

Stratospheric Temperature Trends 1979–2024

- Merged SSU-MLS, SSU-AMSU
- Merged MSU4-AMSU9 (TLS)
- Standard linear trend
- Stratospheric cooling 1979-2024
 - -0.7 K/dec at 40-50 km
 - -0.6 K/dec at 35-45 km
 - -0.5 K/dec at 25-35 km
 - -0.2 K/dec at 13-22 km
- Magnitude increases with height

Stratospheric Temperature Trends 1979–2024

- Multiple linear regression trend uncertainty reduced by factor 2
- Stratospheric cooling 1979-2024
 - -0.62 K/dec at 40-50 km
 - -0.55 K/dec at 35-45 km
 - -0.5 K/dec at 25-35 km
 - -0.15 K/dec at 13-22 km
- Volcanic signals removed
- Wildfire signal: AOD does not fully reflect warming potential of black carbon
- Hunga cooling 2022-2023 due to stratospheric water vapor

Stratospheric Temperature Trends 1979–2024

- Multiple linear regression
- Solar F10.7 index

ENSO 3.4 index

Aerosol index

QBO index: Singapore winds

PC1

PC2

PC3

Latitude-resolved Stratospheric Trends 1979–2024

- Multiple linear regression
- Trends are significant over all latitudes in the stratosphere 1979-2024
- Except in the lower stratosphere at high latitudes

Tropospheric Temperature Trends 1979–2024

- Merged MSU-AMSU channels
- TTS: MSU3+AMSU7
 TMT: MSU2+AMSU5 (+ATMS for STAR)
 corrected for stratospheric contrib.
- Standard linear trend
- Tropospheric warming 1979-2024
 +0.07 to 0.10 K/dec for TTScorr
 +0.16 to 0.20 K/dec for TMTcorr
 +0.15 to 0.23 K/dec for TLT

Tropospheric Temperature Trends 1979–2024

- Merged MSU-AMSU channels
- TTS: MSU3+AMSU7 TMT: MSU2+AMSU5 (+ATMS for STAR) corrected for stratospheric contrib.
- Multiple linear regression Trend uncertainties reduced by factor 2
- **Tropospheric warming 1979-2024** +0.07 to 0.11 K/dec for TTScorr +0.16 to 0.20 K/dec for TMTcorr +0.15 to 0.23 K/dec for TLT

Latitude-resolved Tropospheric Trends 1979–2024

- Multiple linear regression
- Warming over all latitudes Largest warming at northern high lats
- Larger uncertainty at high latitudes due to larger variability

Vertical-resolved Trends 1979–2024

- Merged SSU and AMSU/MLS
- Merged MSU/AMSU
- Radiosondes RICHv1.9, RAOBCOREv1.9
- Significant stratospheric cooling
 1979-2024 of about -0.2 to -0.7 K/dec
- Significant tropospheric warming 1979-2024 of about 0.2 K/dec
- Radiosondes: larger trend in tropical UT
- AMSU TTScorr: smaller trends

Vertical-resolved Trends 2002–2024

- Significant stratospheric cooling 2002-2024 of up to -0.7 K/dec
- Significant tropospheric warming 2002-2024 of 0.2 to 0.4 K/dec
- AMSU shows smaller trends
- Consistency between RO and RS
- Tropical upper tropospheric warming
- Tropical lowermost stratosphere warms

Vertical-resolved Trends – Observations & Models

- Comparison with LESFMIP model trends
- Ensemble means for all forcing runs (hist-all) IPSL-CM6A-LR, CanESM5, CMCC-CM2-SR5, FGOALS-g3, NorESM2-LM, HadGEM3-GC31-LL, GISS-E2-1-G
- More by Matthias Stocker
 Presentation on Fri. 18 July, Session D-1

Height-latitude-resolved Temperature Trends 2002–2024

- RO observations: Strong warming in tropical UTLS and SH subtropics
- RO consistent with radiosondes, radiosondes sparse in tropics and SH

Tropopause trends 2002–2024

- **Lapse rate tropopause height and temperature** annual mean trends
- **Increase in tropical tropopause temperature** with NH/SH asymmetry
- **Significant rise of the tropopause** throughout NH, and in mid-to high SH; but not in tropics

Presentation on tropopause trends at BACO-25, Session M10 Wed 23 July, 13:30 Convention Hall 1F, C106-107

Warming of SH Subtropical Lower Stratosphere and Antarctic Ozone Healing

- SH subtropical lower stratosphere warming linked to BDC slowdown
- Circulation changes also cool the Antarctic lower stratosphere and mask the Antarctic ozone healing from October to December
- Removing circulation changes reveals Antarctic warming and ozone healing

Summary

- Significant stratospheric cooling and tropospheric warming 1979-2024
- Strong tropospheric warming observed in last two decades
- Strong warming also in the lower stratosphere in SH (sub)tropics
- Rise of tropopause height in the NH and in mid-to high SH
- Increase in tropical tropopause temperature (asymmetric)
- Warming in the lower stratosphere in SH (sub)tropics linked to BDC slowdown from October to December masking ozone healing

Thanks for your attention!

Observational Records

Layer average brightness temperatures: merged timeseries since 1979

- Stratospheric Sounding Unit (SSU): SSU-MLS, SSU-AMSU
- Microwave Sounding Unit (MSU) and Advanced MSU merged timeseries

Vertically resolved temperatures:

- Radiosondes (RAOBCORE, RICH)
- GNSS Radio occultation
- Microwave limb sounder

Time (year)

Height-latitude-resolved Temperature Trends 2002–2021

- Amplified warming in the upper troposphere
- Hemispheric asymmetry of LS trends, possible connection with ozone
- Cooling in the stratosphere

LRT trends, seasonally

- Trend patterns generally persistent across seasons; SON and JJA similar pattern to overall trend
- Large positive height trends in SH polar winter
- Almost zero trend in NH spring
- Dipole temperature structure in SH spring between tropics and pole
 BDC changes?

(Ladstädter et al., in review, doi:10.5194/egusphere-2025-2100)

LRT trends regional/seasonal

- LRT height trends not homogeneous across longitudes
- Large positive LRT height trends pronounced over Asian SON and DJF, and over SH polar region
- Large positive LRT temperature trend in SH subtropics from South Pacific region, especially DJF and SON. Corresponds to negative height trend there
- Prominent changes in the subtropics could relate to tropical width?

Warming of SH Subtropical Lower Stratosphere and Antarctic Ozone Healing

- Annual-mean ozone shows insignificant trends in Antarctic ozone poleward of 75°S (A).
- Ozone trends associated with AWLS-related circulation variability (B). Ozone increase in the tropical lower stratosphere and decrease in the Antarctic, reflecting change in SH-BDC.
- Ozone trends after removing the circulation variability, revealing an increase in Antarctic ozone (C).

Hunga Volcanic Eruption – Short-term Climate Impact

• Radiative cooling of up to -4 K in the tropical and subtropical middle stratosphere until mid-2023, clearly corresponding to the water vapor distribution

Minor impact due to aerosols

Detection (GNSS RO, MLS):
Strong cooling over 1.5 years
due to water vapor injection
of Hunga into the stratosphere!

Climate Variability & Extremes – Large Wildfires

• Large wildfire events with aerosol emissions comparable to moderate volcanic eruptions

Temperature anomalies in first weeks of the Australian wildfires

Temperature anomalies before & after the wildfire events

- Daily temperature anomalies during the first weeks collocated with aerosol plume
- Zonal temperature anomalies before & after the wildfire events
- Warming in the stratosphere

Large Wildfires – Short-term Climate Impact

The Australian wildfires caused a warming of the stratosphere larger than any signal from recent volcanic eruptions

- **Maximum warming** of more than 3 K
- **Short-term climate** signal lasting several months