Soil Moisture - Precipitation Feedback over East Asia using IGRA2 Observation Data

Acknowledge This research was supported by Global - Learning & Academic research institution for Master's PhD students, and Postdocs(LAMP) Program of the National Research Foundation of Korea(NRF) grant funded by the Ministry of Education(No. RS-2023-00301702).

Yunju Park¹, Eunkyo Seo¹

¹Land – Atmosphere Group, Pukyong National university, Pusan, South Korea

1. Introduction

◆ Background

- Soil moisture (SM) is a key regulator of land-atmosphere interactions, influencing precipitation (Pr) across climate regimes. Despite its importance, SM-Pr coupling mechanisms remain unclear.
- In East Asia, observation-based studies on SM-Pr feedbacks are particularly limited. Improved understanding is needed to constrain regional hydroclimate.

Purpose of study

This study examines the influence of SM on atmospheric conditions and Pr over East
 Asia using radiosonde data.

2. Data and Method

♦ In situ observation

The Integrated Global Radiosonde Archive Version 2 (IGRA2)

Datasets

	Temporal resolution	Spatial resolution	Used variables
IGRA2	12hourly	Point data	CTP, HI _{low} (T2m, D2m, q)
ERA5	Daily	0.25°x0.25°	u, v, q
ERA5- Land	Hourly	0.1°x0.1°	Soil moisture (SM)
MSWEP	3hourly	0.1°x0.1°	Precipitation (Pr)

- <u>Days with no morning Pr but</u> <u>afternoon Pr were selected</u> to assess the impact of SM on Pr.
- All variables were analyzed for *May–September* (1979–2022).

Morning times (06-12LST), Afternoon times (12-21LST)

♦ CTP-HI_{low} framework (Findell & Eltahir, 2003)

- Atmospheric instability and near-surface humidity were quantified by the convective triggering potential (CTP) and low-level humidity index (HI_{low}), respectively.
- HI_{low} showed a stronger negative correlation with soil moisture than CTP, <u>suggesting</u>
 that near-surface humidity is more sensitive to SM variability.

0.35

300

CTP []/kg]

2. Data and Method

3. Result

- The coupling ratio is high at northern latitudes, suggesting weaker SM-Pr interactions in these regions.
- Moisture convergence is enhanced in East Asia, northeast China.
- To assess the influence of climate modes with different temporal variabilities on East Asian summer Pr, we analyze ENSO, the monsoon, and BSISO as representative modes. <u>ENSO exerts the most notable impact on summer Pr, while the effects of all three modes tend to weaken at higher latitudes.</u>
- East Asian summer afternoon Pr is primarily controlled by moisture convergence,
 with its influence most significant at low latitudes during active climate mode phases.
- At higher latitudes, Pr is predominantly governed by atmospheric processes, and the influence of climate modes becomes comparatively limited.

4. Conclusion

- Atmospheric humidity in East Asia is more sensitive to SM variability than to atmospheric instability.
- East Asian summer Pr is strongly influenced by large-scale atmospheric circulation,
 <u>especially by moisture convergence.</u>
- ENSO appears to have significant influence on summer Pr in East Asia, while the impacts of all climate modes generally diminish at higher latitudes.
- <u>Large-scale circulation during climate modes enhances moisture convergence</u>
 <u>mainly in southern regions</u>, with limited changes in the north.
- These results indicate that <u>summer Pr linked to land-atmosphere interactions in East Asia is strongly influenced by large-scale circulation, emphasizing the need to consider these processes in regional hydroclimate assessments.</u>