



## A mechanism for the response of stationary circulations in the subtropics to global warming

Xavier Levine In collaboration with William R. Boos

> WCRP workshop, Princeton, NJ 11/04/2016

# Rainfall distribution over Asia and Africa shows large zonal asymmetries during boreal summer



(.)\* defines deviation from zonal-mean

CMIP5, 2006-2015, ensemble mean of 22 GCMs, RCP8.5

### ... consistent with dry linear studies

Gill-like circulation in a more comprehensive model



Linear integration about resting basic-state, forced with heating at 90°E, 25°N

## Strong heating over South Asia from monsoon rainfall leads to enhanced dryness over Sahara.

(Rodwell and Hoskins, 1996)

### Our goals

 We quantify the sensitivity of the subtropical Rossby gyre to climate change in an idealized moist aquaplanet GCM, over a wide range of climate

2. We devise a mechanism for its climate sensitivity.

3. We diagnose relevance of this mechanism to climate variability in CMIP5 archive simulations.

### "Gill-like" forcing

Global warming experiment with idealized moist GCM (T85, 30 levels) [Frierson et al., 2006; O'Gorman and Schneider, 2008]

Surface conditions: Slab ocean, uniform thermal inertia and albedo Forcing: Uniform insolation



(Levine and Boos, 2016; J. Clim.)

#### Wet zones near heating zone, enhanced dryness to the west.



Contours: P-E ≤ -1.5 mm day<sup>-1</sup> in cold (Ts=291K, cyan), reference (Ts=302K, green) and warm (Ts=311K, magenta) climates

#### **Integrated changes in P-E with climate change**



P-E averaged over areas where < P-E>0

#### P-E increases faster than CC in cold climates but slower in warm climates, implying strong modulation by dynamics

#### **Vertical velocity profile**



Vertical wind averaged over ascent regions

*Circulation has a 1<sup>st</sup> baroclinic structure* 

#### **Conceptual model of circulation**



#### Longitude

### **Conceptual model of circulation**



Convection communicates near-surface perturbation to air column

#### **Conceptual model of circulation**



#### 1<sup>st</sup> baroclinic circulation is set up in air column

### 1<sup>st</sup> baroclinic mode theory

Dynamics can be linearized:

$$\delta \mathbf{u} \simeq \partial_{T_r} \mathbf{u} \mathbf{x} \delta T_r$$

wind mode: sensitivity of wind to low-level temperature anomaly

(e.g., Neelin and Zeng, 2000)

Wind mode depends only on tropical-mean lapse-rate and tropopause level

Wind mode varies with climate change!

### Vertical wind becomes increasingly sensitive to lowlevel temperature anomalies as climate warms $\delta \omega \simeq \partial_{T_r} \omega \, (\delta T_r)$



#### Wind mode amplifies as climate warms

(Levine and Boos, 2016; J. Clim.)

# Wind mode amplification results in non-monotonic variability of circulation



As climate warms, circulation:

\* strengthens in cold climates from deepening of 1<sup>st</sup> baroclinic mode.

## \* weakens in warm climates from weakening of low-level temperature anomalies.

### How to test relevance of 1<sup>st</sup> baroclinic mode mechanism to the "real world"

• We compare circulation changes over a thin latitudinal band (10N-20N) in 31 GCMs of the CMIP5 archive between from historical simulations (1984-2004) to RCP8.5 scenarios (2079-2099)

• We quantify contribution from 1<sup>st</sup> baroclinic mode deepening.

#### Step1: diagnose vertical mass flux (1984-2004)



#### Integrated vertical mass flux over regions of ascent

### Large intermodel variability in stationary circulation in present-day climate (1984-2004)

# Step2: diagnose geostrophic vertical mass flux (1984-2004)



Integrated geostrophic vertical mass flux at each level

Geostrophic component of the vertical wind is first-baroclinic

# Step 3: diagnose changes in vertical winds and and its geostrophic component



In the ensemble-mean, vertical mass flux weakens by about 5% by late 21<sup>st</sup> century in RCP8.5 scenario.

# Change in vertical wind vs. geostrophic vertical wind (at 500 hPa)



δ(.): RCP8.5 (2079-2099) minus historical (1984-2004) Color: individual GCM Star: ensemble-mean

## Changes in vertical wind scales with that of its geostrophic component.

#### Deepening of troposphere partially offset weakening of tropospheric temperature gradient (in the ensemble-mean)



(inferred) Zonal temperature gradient weakens by about 15% Wind mode strengthens by about 10%

Vertical wind mode strengthens circulation with global warming, and acts against weakening of tropospheric zonal temperature gradient

### Summary

- Subtropical Rossby gyre can be described by 1<sup>st</sup> baroclinic mode framework.
- Deepening of the first-baroclinic mode strengthens circulation as climate warms.
- This effect may be significant in comprehensive climate models, offsetting the circulation weakening from the reduction in temperature anomalies.

### Thank You!

Funding: National Science Foundation (AGS-1515960)

*For more details:* Levine X. J., and W. R. Boos, 2016: A mechanism for the response of the zonally asymmetric subtropical hydrologic cycle to global warming. *Journal of Climate*, **29**, 7851-7867.





## We diagnose vertical wind and its component associated with baroclinic flow



We diagnose stationary vertical wind and its baroclinic component.





### Changing wind in lower troposphere

#### <u>B: change vertical structure keeping magnitude of</u> <u>temperature perturbation at LCL invariant</u>



# Wet zones near heating zone, enhanced dryness to the west.

 $[mm day^{-1}]$ 



Contours: P-E ≤ -1.5 mm day<sup>-1</sup> in cold (Ts=291K, cyan), reference (Ts=302K, green) and warm (Ts=311K, magenta) climates

# Hydrologic imbalance (P-E) scales with stationary precipitation (P\*) over a wide range of climate change



#### Circulation change is non-monotonic with global warming



Bulk stationary vertical wind evaluated at level of maximum

How to explain this non-monotonicity?

# Combining 1<sup>st</sup> baroclinic mode theory and linear vorticity budget provides a quantitative prediction for $\omega^*$



- Slide 1: lat-lon panel of omega\_star, omega\_star Sv\_BC [ensemble-mean or 1 GCM simulation]
- Slide 2: average over 10-20N, show good correlation between Sv\_BC and total updraft; show vertical profile of Sv\_BC.
- Slide 3: decompose correlation into coefficient and mode.

### 1<sup>st</sup> baroclinic mode theory provides a qualitative understanding of stationary circulation changes



Despite its simplicity, our mechanism accounts remarkably well for non-monotonic change in strength!

How about for more comprehensive GCM simulations?