Representing model uncertainty — hierarchy or heterarchy?
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The purpose of using ensembles of simulations is to represent uncertainties in the
underlying dynamic system.

E.g. initial condition ensembles address the chaotic nature of the climate system.

(Objective) Model uncertainties = deficiencies (or inadequacies) in the model itself



ghcertainty is a continuum that ranges from

complete ignorance —- certainty

Three broad categories of uncertainty

Ontological state of complete ignorance
Aleatoric random, irreducible = probability theory

Epistemic resolvable lack of knowledge which we are aware of, reducible



ghcertainty is a continuum that ranges from

complete ignorance —- certainty

Donald Rumsfeld (2002):

There are known knowns: things we know that we know.
There are known unknowns: things we know that we don’t know.
But there are also unknown unknowns: things we don’t know that we don’t know.

unknown knowns: things we don’t know that we know
(things we do not like to know; intentional refusal to acknowledge the things we know)



Sources of model uncertainties (for our type of forecasting models)

Simplifications within the model formulations compared to reality

= Spatial truncation of the resolution of models = unresolved sub-grid scale processes,
parametrisations

= Linearised functions to approximate non-linear relations
= Computational constraints (e.g., using climatological rather than prognostic aerosol distributions)
=  Omitting processes (e.g. coupling, incompleteness)

= Numerical aspects (algorithmic uncertainty)

= (QObservational uncertainties

Design errors (un-identified and identified; structural uncertainty)

Lack of correspondence between model and reality (e.g. model parameters with no
counterpart in reality)

Gaps in our basic knowledge of the relevant processes



Methods used to account for model uncertainties

" Multi-model ensembles (CMiIPs; Iversen et al., 2011)
" Parameter perturbations (QUMP; Bowler et al., 2008; Ollinhao et al., 2016)
" Stochastic physical tendency perturbations (Buizza et al., 1999, Palmer et al., 2009)
B Stochasticity in parametrisations of physical processes (Shutts, 2005; Plant & Craig, 2008)

" Multi-physics ensembles (Charron et al., 2010; Berner et al., 2011)



Why stochastic parametrisations?

= Are more consistent with the scaling symmetries in the Navier-Stokes equations and the
observed atmospheric power-law structure

= Provide specific stochastic realisations of the sub-grid flow, not some assumed bulk average
effect

= Describe the sub-grid tendency in terms of a probability distribution constrained by the
resolved-scale flow

= (Canincorporate physical processes not easily described in conventional parametrisations
(e.g. energy backscatter)

= Parametrisation development can be informed by coarse-graining budget analyses of very
high resolution (e.g. cloud resolving) models

- Palmer (QJRMS 2012), Towards the probabilistic Earth-system simulator: A vision for the future of
climate and weather prediction.



Stochastically Perturbed Parameterisation Tendencies (SPPT)

Operational scheme in ECMWF’s ensemble forecasts on all time scales
Perturbations applied to total parametrised tendency of physical processes as multiplicative noise
Perturbed physical tendencies:

X = (1+ru) X for X={u,v,T,q}

r is a uni-variate Gaussian random number described through a spectral pattern generator which is
smooth in space and time

Spectral coefficients of r are described with an AR(1) process
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Three components of the SPPT pattern generator
with characteristic time and spatial scales

15
time (days) courtesy M. Leutbecher (ECMWF)
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An example study

Perturbed parameter ensemble (PPE)

= poorly constrained cloud physics and
surface parameters in HadCM3

= simultaneous perturbations to 29
parameters

= no control run available

Experimental set-up
= Coupled seasonal retrospective forecasts over the period 1991-2005
= |nitialised on 15t May and 15t November each year

» Assessment of monthly (first month) and seasonal (months 2-4) forecast skill

* *
* XENSEMBLES™ * Weisheimer et al. (GRL, 2011)




ENSO SST forecasts quality
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ENSO SST forecasts quality
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Brier Skill Score
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Sub-seasonal forecasts of global land precipitation
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Sub-seasonal forecasts of land precipitation

MME




o
[N

Brier Skill Score
o

1
o
[y

Seasonal forecasts of global land temperature

A

0.2

g
[y

Brier Skill Score

multi-model (MME) multi-model (MME)

perturbed physics (PPE) perturbed physics (PPE)

control (CTRL) control (CTRL)




Seasonal forecasts of land temperature
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Seasonal forecasts combining PPE and SPE




Seasonal forecasts combining PPE and SPE




Conclusions

Uncertainty is a continuum and its representation in weather and climate forecast models is
currently heterarchical (pluralistic, complementary) rather than hierarchical.

Inferences about model uncertainty from idealised models are intrinsically difficult due to
o the changing nature of model uncertainty across models

o the forecasters’ need to get as accurate a forecast as possible (- complex models)

Example study of monthly and seasonal forecasts using multi-model ensembles (MME),
perturbed parameter ensembles (PPE) and stochastic perturbations (SPE):

o ENSO: MME very good, SPE improved over CTRL, PPE rather poor

o Monthly forecasts: SPE globally most skilful for most land temperature and precipitation
events with regional variations

o Seasonal forecasts: MME (SPE) on average most skilful for temperature (precipitation) over
land, regional variations

o Combination of PPE and SPE approaches potentially improves skill further



