Energetics of the Ocean Surface at Low Frequencies in GFDL's CM2-O Model Hierarchy.

Amanda O'Rourke¹

And collaborations with Brian Arbic¹, Stephen Griffies², Paige Martin¹

¹Unversity of Michigan, Ann Arbor, MI, USA ²NOAA GFDL/Princeton University, Princeton, NJ, USA

From Eddies to Climate

Warm Current

Cold Current

From Eddies to Climate

GFDL CM2-O Model Suite

- Hierarchy of fully coupled GCMs with three horizontal ocean resolutions
 - Constant 1990 radiative forcing
 - 20 years analyzed

CM2-1deg	CM2.5	CM2.6
 1.0° Ocean 50 vertical levels + 0.33° Equatorial waveguide + Mesoscale eddy param. for tracer budgets (Dunne et al 2012) 	0.25° Ocean 50 vertical levels - No mesoscale eddy parameterization in tracer equations	0.10° Ocean 50 vertical levels -No mesoscale eddy parameterization in tracer equations
50km Atmosphere Identical Land + Sea Ice configurations (Delworth et al. 2012)	50km Atmosphere Identical Land + Sea Ice configurations (Delworth et al. 2012)	50km Atmosphere Identical Land + Sea Ice configurations (Delworth et al. 2012)

Griffies et al 2015

Additional Project with CM2-0

- CM2.5 Development – Delworth et al. 2012 (J. Climate) warming
- Climate Sensitivity
 - Winton et al. 2014 (GRL)
- Ocean heat drift
 - Griffies et al. 2015 (J. Climate)
- Cross frontal transport in Southern Ocean
 - Doufour et al. 2015 (JPO)

- Northwest Atlantic shelf
 - Saba et al. 2015 (JGR-Oceans)
- Agulhas mass transport
 - Biastoch et al. 2015 (Nature Communications)
- Patterns of heat uptake in Southern Ocean
 - Morrison et al. 2015 (Accepted to J. Climate)
- Plus more to be submitted!

Ocean Eddies, Kinetic Energy, and Frequency

 Can nonlinearity drive energy between frequencies in an analogous manner to the inverse cascade in wavenumber space?

– High frequency to low frequency?

Ocean Eddies, Kinetic Energy, and Frequency

• Can nonlinearity drive energy between frequencies in an analogous manner to the inverse cascade in wavenumber space?

– High frequency to low frequency?

- Is variability internally or externally driven?
 - Eddy-eddy interaction or externally wind driven?

Ocean Eddies, Kinetic Energy, and Frequency

• Can nonlinearity drive energy between frequencies in an analogous manner to the inverse cascade in wavenumber space?

– High frequency to low frequency?

- Is variability internally or externally driven?
 - Eddy-eddy interaction or externally wind driven?
- How does model resolution influence the energy budget at low frequencies?
 - Do resolved eddies at high frequencies change energy contributions to low frequencies?

Energy in Frequency Across Models

Transfer Equations

• Geostrophic kinetic energy equation, simplified:

 $\frac{\partial \mathrm{KE}}{\partial t} = -\left(\rho H\right)\vec{u}\cdot\nabla\vec{u} + \vec{u}\cdot\vec{\tau} + \mathrm{PE}_{con} + \mathrm{Drag} + \mathrm{Adtl.} \text{ Sources}$

- Transfers obtained via cross spectrum analysis (Arbic et al. 2014)
 - Transfers are the product of two spectral fields, such as
 - Advective ("Nonlinear") Term:
 - Wind Stress Term:

$$T_A = -\Re \left[\widehat{(\rho H \vec{u})} \cdot (\vec{u} \cdot \nabla \vec{u})^* \right]$$
$$T_W = \Re \left[\hat{\vec{u}} \cdot \hat{\vec{\tau}}^* \right]$$

- This spectral transfer diagnostic has been used in previous works including:
 - Hayashi (1980), Salmon (1978, 1980), Hua and Haidvogel (1986), Larichev and Held (1995), LaCase (1996)

Global Geostrophic Advective Flux

- Very little activity in CM2-1d
 - Unable to represent eddy fields except in the very near tropics
 - Boundary currents only appear at low frequencies
- Positive Flux at Low/Negative at High
 - Consistent in CM2.5 and CM2.6
- CM2.6 capturing high frequency fluxes
 - More energetic overall

Global Wind Stress Flux

CM2.1d

CM2.5

CM2.6

Global Wind Stress Flux

CM2.1d

CM2.5

CM2.6

- Negative flux in eddying regions
 - Atmosphere damping eddies?
- Time Anomalous Fields
 - Small correction to largely positive wind power input due to time mean circulation

Eddies in the Ocean

- Advection transfer term extracts geostrophic kinetic energy out of high frequencies and supplies it to low frequencies
 - Apparent in spatial average over eddying regions
- Wind stress transfer term is of similar, but often larger, magnitude than that of the advective transfer term
 - Strongest wind stress transfer at yearly and synoptic timescales
- Transfer source/sink centers shifted to lower frequencies in CM2.5 compared to CM2.6
- Very little advective transfer in CM2-1d
 - CM2-1d is wind driven
- Strong regional dependence
 - Advection term primarily active in eddying regions
 - Wind stress tendencies strongly dependent on mean wind circulation

Hierarchy and Climate

- Eddy interaction across spatial and temporal scales is one of the fundamental questions in climate science
- Increasing interest in the role of eddies in the large scale field parallels ever increasing model resolution
 - Inclusion of eddies can directly change not only the characteristic spatial scale of ocean dynamics, but may also impact the characteristic time scales
- Simplified models are still necessary to understand fundamental dynamics in both atmospheres and oceans
 - This study, for instance, will benefit from an ongoing work utilizing an idealized, geostrophic coupled model with graduate student Paige Martin

CM2.5 compared to CM2.6: Transition Period

Negative Wind Stress Transfer?

- One of the most curious points coming from this analysis is that the wind stress appears to extract kinetic energy, particularly at high frequencies within eddying regions
- Does this mean the ocean is forcing the atmosphere at these locations?
 - Not necessarily. Transfers don't indicate where energy is going or coming from in terms of the energy budget (KE -> PE?)

How should the sign of this term be interpreted?

Negative Wind Stress Transfer?

- One important point to make is that this spectral transfer diagnostic involves the detrending and de-meaning of the wind stress field
 - We have removed the effect of the time mean winds, which is the greatest contribution to energy input into the ocean
- Parseval's Theorem: A physical check

$$\sum_{\omega_{\min}}^{\omega_{\max}} T_{a,b}(\boldsymbol{\omega}) = \sum_{\omega_{\min}}^{\omega_{\max}} \Re \left[\hat{a}(\boldsymbol{\omega}) \hat{b}^*(\boldsymbol{\omega}) \right] = \overline{a(t)b(t)}$$

Mean Global Wind Stress Input

20

10

0

-10

-20

10⁻³ Wm⁻²

$$\overline{u\tau_x} + \overline{v\tau_y} = \overline{u\tau_x} + \overline{v\tau_y} + \overline{u'\tau_x'} + \overline{v'\tau_y'}$$

FIG. 1. Spatial distribution $(10^{-3} \text{ W m}^{-2})$ of (a) $\overline{u_{g,\eta}} \tau_{s,x}$ and (b) $\overline{v_{g,\eta}} \tau_{s,y}$, where $u_{g,\eta}$ and $v_{g,\text{ets}}$ are zonal and meridional geostrophic velocities derived from the sea surface height and $\tau_{s,x}$ and $\tau_{s,y}$ are zonal and meridional wind stress. The equatorial region within $\pm 3^{\circ}$ is excluded from the calculation.

Time Varying Global Wind Stress Input

Transfers in Wavenumber Space

- Negative (positive) transfers indicate sink (source) of energy at a given (k, ω) due to eddyeddy interaction.
- Energy is extracted at small scales and supplied to large scales
 - A small amount of energy is supplied to very small scales.