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Storm-­‐tracking	
  algorithm	
  in	
  an	
  idealized	
  GCM	
  

•  Idealized	
  moist	
  aquaplanet	
  GCM-­‐	
  FMS	
  GFDL	
  (Frierson	
  	
  2006)	
  
•  Tracking	
  algorithm:	
  “TRACK”,	
  by	
  Kevin	
  Hodges	
  (Hodges,	
  1995)
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FIG. 10. EKE for varying strength of the localized oceanic heat flux Q f . Shown is EKE at upper levels (300 mb), for simulations with Q f ranging
from 0.6Q0-2Q0. In all panels, small thick box shows the region where the localized ocean heat flux is applied.

higher), which is located right before the region where the
poleward deflection is observed.

In agreement with this, the latitudinal drift that the
average cyclone propagates poleward increases with the
strength of the heating source (Fig. 11a). A detailed exam-
ination of each of the dominant PV terms (namely, latent
heat release, transient nonlinear advection, and a station-
ary adevection) in the downstream region where the tilt
is maximized (as shown spatially for the reference simula-
tion Q0 in Fig. 9b-d) reveals some interesting results about
their relative role in the poleward advection of the cy-
clones (Fig. 11b). First, the maximum value of the PV ten-
dency terms increase as the heating is increased. The max-
imum PV tendency due to latent heat release (blue line) in-
creases only slightly when the heat flux is increased, and is
always higher than the PV tendency due to transient non-
linear and stationary PV advection terms. The transient
nonlinear advection also increases modestly as the heat
flux strengthens. At low forcing, it is larger than the sta-
tionary advection of the transient field. However, around
Q f = 1.5Q0 this picture is reversed, and the maximum PV
tendencies from stationary advection become larger than
the transient effect. The stationary advection of the tran-
sient field not only increased significantly with the forc-
ing, but it also reached values comparable do those as-
sociated with LHR. Hence, when the zonal asymmetry is
large, the stationary advection becomes an important fac-

tor controlling and shaping the structure of the storm track.
This is also apparent in the spatial structure of the EKE
(Fig. 10), where at high heat flux forcing Q f the EKE be-
comes more wavy and more controlled by the stationary
wave as demonstrated in Fig. 11.

8. Summary and discussion

The role of stationary-transient interactions in shaping
midlatitude storm tracks is investigated here in an ideal-
ized GCM with a localized heating source. The inclusion
of a localized asymmetry in the midlatitudes results in an
enhancement of the zonal flow and the EKE, and a pole-
ward deflection in the downstream region (Fig. 2).

Transient eddies were shown previously to play an im-
portant role in maintaining the poleward tilt of the storm
tracks in the time-mean balanced state (Orlanski 1998).
However, analyzing the eddy-mean flow interaction in the
equilibrium state cannot give a complete understanding
of how such a balance is achieved (i.e., it is difficult to
infer ’cause and effect’). In the current study we take
a different approach to study the poleward deflection of
the storm tracks. The idealized GCM output is analyzed
with a feature tracking algorithm, to identify cyclones and
track them Lagrangially. Cyclone composites are then
produced at various spatial locations downstream of the
heating source. The advantage of such a semi-Lagrangian
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sponsible for the poleward motion of cyclonic storms in
the midlatitudes. The first resulted from a poleward ad-
vection of the low level cyclones by the upper level PV,
as a result of the westward tilt with height that character-
izes growing midlatitude cyclones. From a PV perspec-
tive, cyclongensis is explained by the interaction between
an upper level wave trough and a low level PV anomaly.
Growth is achieved when the phase difference between
them is such that the upper trough is to the west of the
low level PV, and thus they are mutually amplifying each
other by advecting the background PV. TK16 emphasized
that this configuration not only promotes growth, but also
a poleward tendency at low levels, which is a result of the
nonlinear advection of the low level PV by upper level
PV. The second important mechanism discussed in TK16
for the poleward motion of midlatitude cyclones is the re-
lease of latent heating. Since cyclones rotate anticlock-
wise in the NH (and contrary in the SH), they systemati-
cally transfer poleward warm and moist subtropical air to
their east. Since cyclones are also characterized by low
level mass convergence and hence upward motion, this
warm and moist air travels poleward and upward, where
is cools and condenses. Thus, latent heat release and con-
sequent warming occurs in the mid-troposphere. This can
lead to both increased static stability and relative vorticity
at lower levels, which act both to strengthen the low level
cyclone. Thus, a positive PV tendency forms at lower lev-
els, propagating the anomaly eastward and poleward.

When a localized asymmetry is included, such as a lo-
calized ocen heat flux, a stationary wave is formed. The
stationary wave can influence the dynamics of the low
level cyclones, and its effect most be taken into account.
In this work we repeat a similar analysis to that performed
in TK16, except we now include the stationary part of
the flow and examine how its contribution to the track of
the low level cyclones vary spatially. For that purpose,
we decompose the flow into: a(x,y, p, t) = a(x,y, p) +

a

0(x,y, p, t) = [a(y, p)]+ a(x,y, p)
⇤
+ a

0(x,y, p, t), where a

is any field of interest. Here bar represents time averag-
ing, square brackets represent zonal averaging and prime
represents transient eddy (deviation from time mean).

The resulting stationary wave for our simulation is
shown in Fig. 4. In all panels, the small thick box show
the heating box, and the four bigger boxes show the down-
stream locations chosen for further analysis. The station-
ary PV at upper level (Fig. 4a), mainly shows a positive
PV anomaly to the west of the heating box. On the con-
trary, at lower levels the stationary PV anomaly is to the
east of the heating box, and is stretched eastward and pole-
ward (Fig. 4d). The stationary zonal mean flow at upper
levels (Fig. 4b) is positive downstream and poleward of
the heating box, and negative downstream and southward.
This implies that the overall zonal flow has strengthened
on its poleward flank and weakened on its southward flank
as a result of the warming. Interestingly, far enough from

the heating this picture is reversed, implying that the maxi-
mum jet has moved slightly equatorward. At lower levels,
the stationary zonal mean flow (Fig. 4e) has a different
structure close to the heating area and downstream of the
heating box. Close to the heating, a cyclonic stationary
circulation is formed, opposite to the sign of the station-
ary zonal flow at upper levels. Downstream, however, the
stationary zonal mean flow is similar to that seen in upper
levels. At both heights, the third downstream box cap-
tures the region where the zonal flow is tilted poleward.
The downstream boxes are chosen to roughly collocate
with the alternating sign of the stationary meridional ve-
locity. At upper level (Fig. 4c), the stationary meridional
flow is positive in the region of the heating box, and then
changes sign periodically over a finite region downstream.
At lower level (Fig. 4f), the stationary meridional velocity
is different very close to the heating box, where cyclonic
circulation is formed. Downstream however, the station-
ary meridional velocity align with that at upper levels (last
three boxes).

In the following sections we perform a composite anal-
ysis in each of the regions marked by the boxes. This re-
veals the different structure and hence different interaction
of the stationary wave with transient field, and help under-
standing the different downstream structure observed.

4. Composites and downstream evolution

In each downstream box marked in Fig. 4, we perform
a composite analysis, based on the tracking data (shown in
Fig. 3). The composite is performed by placing a box sized
30 degrees in latitude by 40 degrees in longitude around
the centre of the cyclone, as identified by the tracking al-
gorithm, at every time step (every six hours) . For each
box, only the part of the track of cyclones that pass in the
box is kept for the composite. Then, any field of interest
is being accumulated along the trajectory in the box, and
then averaged together with all other tracks. Overall, each
composite box is averaged over ⇠ 200 storms.

The downstream evolution of the composites is shown
in Fig. 5. The composites of the stationary part of flow at
low levels (Fig. 5a-c) resemble the stationary climatology
at the region of each box (as in Fig. 4d-e). In all the panels
of Fig. 5, the black contours show the composite of the low
level transient PV anomaly associated with the cyclone.
Close to the heating area, in box A (leftmost column of
Fig. 5), there is a stationary cyclonic circulation (Fig. 5a-
c). The low level stationary PV anomaly (Fig. 5c) is cen-
tered around the low level transient PV anomaly, though it
is stretched in the SW-NE direction.
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ing, square brackets represent zonal averaging and prime
represents transient eddy (deviation from time mean).

The resulting stationary wave for our simulation is
shown in Fig. 4. In all panels, the small thick box show
the heating box, and the four bigger boxes show the down-
stream locations chosen for further analysis. The station-
ary PV at upper level (Fig. 4a), mainly shows a positive
PV anomaly to the west of the heating box. On the con-
trary, at lower levels the stationary PV anomaly is to the
east of the heating box, and is stretched eastward and pole-
ward (Fig. 4d). The stationary zonal mean flow at upper
levels (Fig. 4b) is positive downstream and poleward of
the heating box, and negative downstream and southward.
This implies that the overall zonal flow has strengthened
on its poleward flank and weakened on its southward flank
as a result of the warming. Interestingly, far enough from

the heating this picture is reversed, implying that the maxi-
mum jet has moved slightly equatorward. At lower levels,
the stationary zonal mean flow (Fig. 4e) has a different
structure close to the heating area and downstream of the
heating box. Close to the heating, a cyclonic stationary
circulation is formed, opposite to the sign of the station-
ary zonal flow at upper levels. Downstream, however, the
stationary zonal mean flow is similar to that seen in upper
levels. At both heights, the third downstream box cap-
tures the region where the zonal flow is tilted poleward.
The downstream boxes are chosen to roughly collocate
with the alternating sign of the stationary meridional ve-
locity. At upper level (Fig. 4c), the stationary meridional
flow is positive in the region of the heating box, and then
changes sign periodically over a finite region downstream.
At lower level (Fig. 4f), the stationary meridional velocity
is different very close to the heating box, where cyclonic
circulation is formed. Downstream however, the station-
ary meridional velocity align with that at upper levels (last
three boxes).

In the following sections we perform a composite anal-
ysis in each of the regions marked by the boxes. This re-
veals the different structure and hence different interaction
of the stationary wave with transient field, and help under-
standing the different downstream structure observed.

4. Composites and downstream evolution

In each downstream box marked in Fig. 4, we perform
a composite analysis, based on the tracking data (shown in
Fig. 3). The composite is performed by placing a box sized
30 degrees in latitude by 40 degrees in longitude around
the centre of the cyclone, as identified by the tracking al-
gorithm, at every time step (every six hours) . For each
box, only the part of the track of cyclones that pass in the
box is kept for the composite. Then, any field of interest
is being accumulated along the trajectory in the box, and
then averaged together with all other tracks. Overall, each
composite box is averaged over ⇠ 200 storms.

The downstream evolution of the composites is shown
in Fig. 5. The composites of the stationary part of flow at
low levels (Fig. 5a-c) resemble the stationary climatology
at the region of each box (as in Fig. 4d-e). In all the panels
of Fig. 5, the black contours show the composite of the low
level transient PV anomaly associated with the cyclone.
Close to the heating area, in box A (leftmost column of
Fig. 5), there is a stationary cyclonic circulation (Fig. 5a-
c). The low level stationary PV anomaly (Fig. 5c) is cen-
tered around the low level transient PV anomaly, though it
is stretched in the SW-NE direction.

Each	
  field	
  is	
  decomposed	
  into	
  three	
  components:	
  	
  

Transient	
  eddy	
  Sta4onary	
  wave	
  Time	
  and	
  zonal	
  mean	
  

Composites	
  are	
  done	
  on	
  the	
  upstream	
  
and	
  	
  downstream	
  boxes	
  separately:	
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FIG. 2. Vertically integrated eddy kinetic energy (EKE) (MJm-2), based on NCEP reanalysis data and calculated using a 3-10 day bandpass filter,
averaged over the years 1970-2015 during the NH winter (DJF).

The poleward tendency is studied through a PV analy-
sis of cyclone composites. A detailed PV budget reveals
the importance the upper level PV and diabatic heating
associated with latent heat release (LHR). Both act to pro-
duce a positive PV tendency on the northeastern side of
the surface PV anomaly, and are resulting from baroclinic-
ity. The westward tilt with height that characterizes extra-
tropical cyclones implies that the upper level winds advect
the cyclone poleward. In addition, the LHR is known to
have an important role in the cyclongensis process (e.g.,
Stoelinga, 1996; Posselt et al., 2004). The warm conveyor
belt, which describes the poleward and upward motion of
warm and moist air that originates in the warm sector of
the cyclone (Browning et al., 1994; Harrold, 1973), travels
parallel to the cold front and ascents upwards in the vicin-
ity of the warm front. As the warm and moist air travels
upward and poleward, it cools and condenses, releasing
latent heat. Thus, LHR is maximized in the northeastern
corner of the cyclone. This produces positive PV tendency

at lower levels, which is shown here to contribute to the
cyclone’s propagation towards the northeast direction.

The report is organized as follows. In section 2 we de-
scribe the numerical methods used, namely the idealized
GCM configuration and the tracking algorithm. In sec-
tion 3 previous work of the PhD, which focused on the
time-mean balances, is summarized. Section 4 describes
the current results. In section 4.1, tracking results for the
poleaward propagation of cyclones and anti-cyclones are
introduced. In section 4.2 the composite analysis of sur-
face cyclones is presented and some of the fundamental
characteristics of cyclones are discussed. In section 4.3 we
present a PV tendency analysis that highlights the impor-
tant ingredients responsible for the poleward propagation,
and section 4.4 summarizes the current results. Summary
of up-to-date results is given in in section 6, and future
plan for the PhD is briefly described in section 8.

** As was noted by Orlanski (2003) and further stud-
ied by Rivire (2009), the eddy tilt can also imply the
type of wave breaking occurring within the jet. Anti-
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belt, which describes the poleward and upward motion of
warm and moist air that originates in the warm sector of
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ity of the warm front. As the warm and moist air travels
upward and poleward, it cools and condenses, releasing
latent heat. Thus, LHR is maximized in the northeastern
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cyclone’s propagation towards the northeast direction.

The report is organized as follows. In section 2 we de-
scribe the numerical methods used, namely the idealized
GCM configuration and the tracking algorithm. In sec-
tion 3 previous work of the PhD, which focused on the
time-mean balances, is summarized. Section 4 describes
the current results. In section 4.1, tracking results for the
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introduced. In section 4.2 the composite analysis of sur-
face cyclones is presented and some of the fundamental
characteristics of cyclones are discussed. In section 4.3 we
present a PV tendency analysis that highlights the impor-
tant ingredients responsible for the poleward propagation,
and section 4.4 summarizes the current results. Summary
of up-to-date results is given in in section 6, and future
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The poleward tendency is studied through a PV analy-
sis of cyclone composites. A detailed PV budget reveals
the importance the upper level PV and diabatic heating
associated with latent heat release (LHR). Both act to pro-
duce a positive PV tendency on the northeastern side of
the surface PV anomaly, and are resulting from baroclinic-
ity. The westward tilt with height that characterizes extra-
tropical cyclones implies that the upper level winds advect
the cyclone poleward. In addition, the LHR is known to
have an important role in the cyclongensis process (e.g.,
Stoelinga, 1996; Posselt et al., 2004). The warm conveyor
belt, which describes the poleward and upward motion of
warm and moist air that originates in the warm sector of
the cyclone (Browning et al., 1994; Harrold, 1973), travels
parallel to the cold front and ascents upwards in the vicin-
ity of the warm front. As the warm and moist air travels
upward and poleward, it cools and condenses, releasing
latent heat. Thus, LHR is maximized in the northeastern
corner of the cyclone. This produces positive PV tendency

at lower levels, which is shown here to contribute to the
cyclone’s propagation towards the northeast direction.

The report is organized as follows. In section 2 we de-
scribe the numerical methods used, namely the idealized
GCM configuration and the tracking algorithm. In sec-
tion 3 previous work of the PhD, which focused on the
time-mean balances, is summarized. Section 4 describes
the current results. In section 4.1, tracking results for the
poleaward propagation of cyclones and anti-cyclones are
introduced. In section 4.2 the composite analysis of sur-
face cyclones is presented and some of the fundamental
characteristics of cyclones are discussed. In section 4.3 we
present a PV tendency analysis that highlights the impor-
tant ingredients responsible for the poleward propagation,
and section 4.4 summarizes the current results. Summary
of up-to-date results is given in in section 6, and future
plan for the PhD is briefly described in section 8.
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Summary	
  and	
  conclusions	
  
•  zonally	
  symmetric	
  storm	
  track-­‐	
  two	
  mechanisms	
  for	
  poleward	
  propaga4on	
  

•  Zonally	
  asymmetric	
  storm	
  track-­‐	
  an	
  addi4onal	
  sta4onary	
  
advec4on	
  is	
  enhancing	
  the	
  downstream	
  poleward	
  4lt	
  	
  	
  

Advec4on	
  by	
  upper	
  level	
  PV	
  

upstream	
  
	
  
	
  
	
  
	
  

	
  
	
  
	
  
	
  

downstream	
  

•  The	
  poleward	
  drib	
  of	
  cyclones	
  increases	
  in	
  idealized	
  global	
  warming	
  experiments-­‐	
  
consistent	
  with	
  more	
  water	
  vapor	
  and	
  stronger	
  jets	
  

•  Results	
  from	
  CMIP5	
  models	
  show	
  enhanced	
  poleward	
  drib	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
in	
  the	
  Atlan4c	
  region	
  and	
  SH	
  in	
  projected	
  runs	
  

Thank	
  you!	
  J	
  

Latent	
  heat	
  release	
  

•  May	
  explain	
  the	
  observed	
  downstream	
  deflec4on	
  of	
  the	
  Pacific	
  storm	
  tracks.	
  
Does	
  not	
  explain	
  the	
  structure	
  of	
  the	
  Atlan4c	
  storm	
  track.	
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In	
  a	
  warmer	
  climate:	
  
•  Stronger	
  upper	
  level	
  jet	
  hence	
  stronger	
  nonlinear	
  advec4on	
  at	
  low	
  levels.	
  
•  Larger	
  LHR	
  is	
  probably	
  due	
  to	
  larger	
  satura4on	
  water	
  vapour	
  content	
  (given	
  that	
  

rela4ve	
  humidity	
  does	
  not	
  change	
  significantly)	
  


