The poleward deflection of midlatitude storm tracks-
from idealized GCMs to comprehensive climate prediction models

Talia Tamarin and Yohai Kaspi
Weizmann Institute of Science,
Model hierarchies workshop, Princeton, 2016
poleward deflection of storm tracks

Eddy kinetic energy (EKE)

\[EKE = \frac{1}{2} (\bar{u}^2 + \bar{v}^2) \]

Poleward tilt of the EKE

Cyclone tracks

Poleward propagation of cyclones
Key questions:

- What controls the poleward deflection?
- What sets the differences between the Pacific and Atlantic storm tracks?

Idealized zonally symmetric GCM

Idealized zonally asymmetric GCM

Reanalysis data
Key questions:

- What controls the poleward deflection?
- What sets the differences between the Pacific and Atlantic storm tracks?
- How can climate change affect the poleward deflection of cyclones?

Idealized *global warming* experiments

[CMIP5 projection models]
Storm-tracking algorithm in an idealized GCM

Zonally symmetric storm track

The average cyclone in a zonally symmetric GCM propagates \(\sim 7.9^\circ \) poleward

- Idealized moist aquaplanet GCM - FMS GFDL (Frierson 2006)
- Tracking algorithm: “TRACK”, by Kevin Hodges (Hodges, 1995)

Tamarin and Kaspi, JAS (2016a)
Storm-tracking algorithm in an idealized GCM

Zonally symmetric storm track

Cyclones

Pressure and vorticity anomalies

Cyclone composites:
- Put a box around each center.
- Average fields moving with the box until maximum intensity, and sum over all cyclones.
Composites of PV tendency

Decompose \(q = \bar{q} + q' \) and plug into \(\frac{dq}{dt} = Q \) where \(q = \frac{1}{\rho} \xi_a \cdot \nabla \theta \) is the Ertel PV.

\[
\frac{\partial q'}{\partial t} \approx -\bar{u} \frac{\partial q'}{\partial x} - v' \frac{\partial \bar{q}}{\partial y} - u' \frac{\partial q'}{\partial x} - v' \frac{\partial q'}{\partial y} - w' \frac{\partial q'}{\partial z} + Q
\]

Transient PV tendency \(L_y \)
Horizontal advection \(L_x \)
Latent heat release \(L_x \)
Composites of PV tendency

Decompose $q = \bar{q} + q'$ and plug into into $\frac{dq}{dt} = Q$ where $q = \frac{1}{\rho} \mathbf{\xi}_a \cdot \nabla \theta$ is the Ertel PV

$$\frac{\partial q'}{\partial t} \approx -\bar{u} \frac{\partial q'}{\partial x} - v' \frac{\partial \bar{q}}{\partial y} - u' \frac{\partial q'}{\partial x} - v' \frac{\partial q'}{\partial y} - w' \frac{\partial q'}{\partial z} + Q$$

Horizontal advection
Composites of PV tendency

Decompose $q = \bar{q} + q'$ and plug into into $\frac{dq}{dt} = Q$ where $q = \frac{1}{\rho} \zeta_a \cdot \nabla \theta$ is the Ertel PV

$$\frac{\partial q'}{\partial t} \approx -u \frac{\partial q'}{\partial x} - v \frac{\partial \bar{q}}{\partial y} - u' \frac{\partial q'}{\partial x} - v' \frac{\partial q'}{\partial y} - w' \frac{\partial q'}{\partial z} + Q$$

Horizontal advection

nonlinear advection
Composites of PV tendency

Decompose $q = \bar{q} + q'$ and plug into

$$\frac{dq}{dt} = Q$$

where

$$q = \frac{1}{\rho} \bar{\zeta} \cdot \nabla \theta$$

is the Ertel PV

$$\frac{\partial q'}{\partial t} \approx \bar{u} \frac{\partial q'}{\partial x} - \bar{v} \frac{\partial \bar{q}}{\partial y} - u' \frac{\partial q'}{\partial x} - v' \frac{\partial q'}{\partial y} - w' \frac{\partial q'}{\partial z} + Q$$

Horizontal advection

Meridional nonlinear advection from UPV
Composites of PV tendency

Decompose \(q = \bar{q} + q' \) and plug into into
\[
\frac{dq}{dt} = Q
\]
where \(q = \frac{1}{\rho} \zeta_a \cdot \nabla \theta \) is the Ertel PV

\[
\frac{\partial q'}{\partial t} \approx -\bar{u} \frac{\partial q'}{\partial x} - \bar{v} \frac{\partial \bar{q}}{\partial y} - u' \frac{\partial q'}{\partial x} - v' \frac{\partial q'}{\partial y} - \frac{1}{\rho} \frac{\partial q'}{\partial x} - w' \frac{\partial q'}{\partial z} + Q
\]

Meridional nonlinear advection from UPV

T. Tamarin and Y. Kaspi, “The poleward motion of extratropical cyclones from a PV tendency analysis”, JAS (2016)
Composites of PV tendency

Decompose $q = \bar{q} + q'$ and plug into $\frac{dq}{dt} = Q$ where $q = \frac{1}{\rho} \xi_a \cdot \nabla \theta$ is the Ertel PV

\[
\frac{\partial q'}{\partial t} \approx -\bar{u} \frac{\partial q'}{\partial x} - v' \frac{\partial \bar{q}}{\partial y} - u' \frac{\partial q'}{\partial x} - v' \frac{\partial q'}{\partial y} - w' \frac{\partial q'}{\partial z} + Q
\]

Latent heat release

Equivalent potential temperature

Meridional Velocity

Vertical velocity

Tamarin and Kaspi, JAS (2016)
The poleward motion of cyclones in a zonally asymmetric storm track

Downstream of heating box, the poleward drift of cyclones is enhanced
The poleward motion of cyclones in a zonally *asymmetric* storm track

Idealized GCMs with increased strength of heating:

The storm track becomes more tilted

Both the poleward drift of cyclones and the tilt of the EKE increase as the heating increases

T. Tamarin and Y. Kaspi, “Mechanisms controlling the downstream poleward deflection of midlatitude storm tracks”, JAS (2016b)
Composites in a zonally asymmetric system

Each field is decomposed into three components:

$$a(x, y, p, t) = \overline{a(y, p)} + \overline{a(x, y, p)^*} + a'(x, y, p, t)$$

- Time and zonal mean
- Stationary wave
- Transient eddy

Composites are done on the upstream and downstream boxes separately:

$$\overline{v^*}$$

$$\overline{v'T'}$$
The dominant terms in the poleward deflection now include also a \textit{stationary wave}.

- PV tendency from the stationary wave advection is \textit{southeastward upstream} and \textit{northeastward downstream}
- Poleward deflection is \textit{suppressed upstream} and \textit{enhanced downstream}
The dominant terms in the poleward deflection now include also a \textit{stationary wave}.

- PV tendency from the stationary wave advection is \textit{southeastward upstream} and \textit{northeastward downstream}.
- Poleward deflection is \textit{suppressed upstream} and \textit{enhanced downstream.}
The dominant terms in the poleward deflection now include also a *stationary wave*

- PV tendency from the stationary wave advection is **southeastward upstream** and **northeastward downstream**
- Poleward deflection is **suppressed upstream** and **enhanced downstream**
How may climate change affect the poleward motion of cyclones

Idealized global warming experiments-

$T_s = 286 \ K$

Coldest simulation

$T_s = 299 \ K$

Warmest simulation

In a warmer climate, the poleward propagation is intensified

- PV tendency due to horizontal advection and latent heat release increase
- Consistent with more water vapor and stronger upper level jet
Possible implications - *the projected poleward shift of the storm tracks*

Global climate models predict that the latitudinal band of storms will shift poleward in a global warming scenario.

\[EKE = \frac{1}{2} \left(u'^2 + v'^2 \right) \]

CMIP5 models
Full physics simulations
RCP8.5 (4xCO2 Scenario)

Possible relation between cyclone track and the poleward shift:

- Lat increases
- Lon increases
- Tilt angle increases

- Lat increases
- Lon decreases
- Tilt angle increases

Enhanced latitudinal drift is associated with a poleward shift
Tracking cyclones in CMIP5

Taking the strongest 200 cyclones identified from each model in the Atlantic storm track-

Storms in the Atlantic will likely drift more poleward
Tracking cyclones in CMIP5

Taking *all cyclones* identified-

- **Atlantic**
 - Positive shift
 - No obvious signal

- **Pacific**
 - No obvious signal

- **NH**
 - No obvious signal

- **SH**
 - Negative shift

A poleward shift in the **Atlantic** and in the **SH** storm track.
Summary and conclusions

- zonally **symmetric** storm track- two mechanisms for poleward propagation

 Advection by upper level PV

 ![Advection by upper level PV](image1)

 ![Latent heat release](image2)

 +

- Zonally **asymmetric** storm track- an additional stationary advection is enhancing the downstream poleward tilt

- May explain the observed downstream deflection of the **Pacific storm tracks**. Does not explain the structure of the **Atlantic storm track**.

- The poleward drift of cyclones increases in **idealized global warming experiments**-consistent with more water vapor and stronger jets

- Results from **CMIP5** models show enhanced poleward drift in the Atlantic region and SH in projected runs

Thank you! 😊
Composites of PV and PV tendency \(\frac{\partial q}{\partial t} \)

Ertel PV:

\[q = \frac{1}{\rho} \zeta_a \cdot \nabla \theta \]

Upper level PV (color) and upper level velocity field (arrows)

Low level PV (black) and low level PV tendency (red for positive and blue for negative)

- **Positive PV tendency** in the northeastern side of the surface PV and **negative PV tendency** in the southwestern side of the surface PV
- **Strong indication** for upper level advection
Idealized global warming scenarios—
Enhanced poleward motion in warmer climates

- **Mean latitudinal drift**
- **PV tendency due to latent heat release and horizontal advection**
- **Mean PV intensity**
- **Total PV tendency**

In a warmer climate:
- Stronger upper level jet hence stronger nonlinear advection at low levels.
- Larger LHR is probably due to larger saturation water vapour content (given that relative humidity does not change significantly)