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Isentropes and Tropopause according to Shaw (1930's):

F1G. 63. VARIATION OF REALISED ENTROPY IN A SECTION OF THE UPPER AIR FROM NORTH TO SOUTH.
REALISED ENTROPY = (', log, (POTENTIAL TEMPERATURE) + CONSTANT.
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The shaded band with vertical hatching indicates the probable position of the tropopause. ) \
The shaded areas with oblique hatching indicate the great land masses necar the poles, namely G::eenlgnd and tlf}e Antarctic Coptment.
v indicates observations which give exceptionally high realised entropy. ~ indicates observations which give exceptionally low realised entropy.

From Sir Napier Shaw's Manual of Meteorology, Vol. Il (1936)




Folkins et al. (999) , Tropical Tropopause
Cao o Layer (TTL)
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Figure 2. Average profiles of temperature, Os, and
lapse rate(LR) from all 108 Samoan ozonesondes.




Tropical Upper Troposphere / Lower Stratosphere
~ Tropical Tropopause Layer (TTL)

» Sets boundary conditions for constituents entering
the stratosphere, most importantly water vapor

 Water vapor is crucial for stratospheric radiative
budget (and for surface climate)

 Temperature variability is governed by unusually
large number of processes, e.g. Dynamics on vast
range of spatial and temporal scales (convective
plumes, small & large scale waves, planetary-scale
circulations)



Tropical Tropopause Layer and Deep Convection

stratospheric circulation
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Annual Cycle in Tropical Tropopause Temperature

CCMVal2 Models

Cold Point Tropopause Air Temperature, -20- 20lat
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Tropical Tropopause Temperature
CMIP5 Models
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Stratospheric Radiative Equilibrium (SRE) Solutions:

e constrain tropospheric climate (e.g. equal to observed
climate, incl. tracers)

 perform off-line radiative transfer calculations (clear-sky)
to obtain stratospheric temperatures in radiative
equilibrium for given tracer distribution

» Radiative heating rates calculated using RRTM (Rapid
Radiative Transfer Model), Mlawer et al. 1997)

What is the resulting TTL structure?

as in Birner (2010)
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— much reduced TTL thickness without stratospheric
dynamics (in Strat. Rad. Equ.)



Stratospheric Radiative Equilibrium Solutions
CCMVal-2 Models (historical runs)
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— much reduced TTL thickness without stratospheric

dynamics, qualitatively consistent across models




Radiative—Convective Equilibrium Solutions with
varying stratospheric background H,O concentrations
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Parameters: T__ = 300 K, tropospheric lapse rate = 6.5 K/km,
relative humidity = 50%, observed O, profile




Longwave Heating Rates in RCE as a function of
stratospheric background H,O concentrations
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Radiative—Convective Equilibrium Solutions with
varying stratospheric background H,O concentrations

Single-column, convective adjustment Highly truncated 2-d CRM
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2-d CRM: domain size sensitivit
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Radiative—Convective Equilibrium Solutions with
varying Ozone transition levels
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Parameters: T__ = 300 K, tropospheric lapse rate = 6.5 K/km,
relative humidity = 50%, q__ = 4 ppmv




Radiative—Convective Equilibrium Solutions with
varying Ozone transition levels

Single-column, convective adjustment Highly truncated 2-d CRM
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Conclusions

e TTL temperatures predominantly shaped by stratospheric
upwelling (cooling), but also sensitive to radiative tracers

» TTL upwelling also shapes stratospheric H,O and O,
profiles, which in turn have strong impacts on TTL

temperature structure

- Negative feedback between upwelling and H,O in the
stratosphere, but feedback reversed in TTL

- Positive feedback between upwelling and O, in TTL



RCE Sensitivity to Microphysics Parameterization in 3-d
CRM (with imposed stratospheric upwelling)
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