Carbon dioxide's direct weakening of the tropical circulation: from comprehensive climate models to axisymmetric Hadley cell theory

> Timothy M. Merlis McGill University

The spatial structure of radiative forcing provokes tropical circulation changes...

The spatial structure of radiative forcing provokes tropical circulation changes...

... & these direct circulation changes are more robust than temperature-dependent ones

Direct vs. Temperature Mediated Climate Changes

Many climate changes are proportional to the amount of global warming:

$$\frac{dX}{dCO_2} \approx \frac{\partial X}{\partial \langle T_s \rangle} \frac{\partial \langle T_s \rangle}{\partial CO_2}$$

Direct vs. Temperature Mediated Climate Changes

But radiative forcing agents can also directly change aspects of climate:

$$\frac{dX}{dCO_2} \approx \frac{\partial X}{\partial \langle T_s \rangle} \frac{\partial \langle T_s \rangle}{\partial CO_2} + \frac{\partial X}{\partial CO_2}$$

Direct tropical circulation weakening robustly simulated in CMIP5 GCMs Bony et al. (2013)

The spatial structure of radiative forcing provokes tropical circulation changes...

... & these direct circulation changes are more robust than temperature dependent ones

IPCC AR5: 45+ figures of structure of radiative forcing

The spatial structure of radiative forcing provokes tropical circulation changes...

... & these direct circulation changes are more robust than temperature dependent ones

IPCC AR5: 45+ figures of *aerosol* radiative forcing, but 0 of carbon dioxide's structure

Spatial structure of CO₂ radiative forcing

The climatological cloud and w.v. distribution "masks" (=reduces) the CO₂ radiative forcing in regions of mean ascent.

CO₂ radiative forcing is spatially inhomogeneous!

Required atmospheric energy transport of mean tropical circulations decreases.

Sketch of cloud masking of CO₂ radiative forcing

Surface radiation & fluxes also affect circulation energetics... key for land-sea circulation changes Shaw & Voigt (2016)

CO₂ radiative forcing is spatially inhomogeneous!

Merlis (2015): Direct weakening of tropical circulations from masked CO₂ radiative forcing. PNAS

~15-25% of century-scale weakening is a direct CO₂ weakening

Idealized Models: Aquaplanet & One-layer

Prescribed cloud

Idealized Models: Aquaplanet & One-layer

Remove cloud \implies remove direct CO2 weakening

SLM from Sobel & Schneider (2009) implemented by Tim Cronin ~2% direct weakening across model hierarchy

CO₂ radiative forcing is spatially inhomogeneous!

Low clouds: little impact on longwave & big impact on shortwave

Differences in spatial structure of radiation forcing

Direct circulation response to CO₂, solar forcing fixed SST, altered forcing

In aquaplanet version of GFDL's HiRAM 50-km GCM

Merlis et al. (2013b)

Comprehensive BC GFDL AM2.1 also has forcing dependent direct mean circulation response

Direct circulation response to CO₂, solar forcing fixed SST, altered forcing

In aquaplanet version of GFDL's HiRAM 50-km GCM

Comprehensive BC GFDL AM2.1 also has forcing dependent direct mean circulation response

CO₂ for<u>ces larger ITCZ</u> shifts than comparable S₀ increase

These shifts are temperature-dependent (not direct) changes

CO₂ forces larger ITCZ shifts than comparable S₀ increase

Solar forcing provokes an increase in tropical energy input because it is larger in the tropical mean than CO_2 forcing

CO₂ forces larger ITCZ shifts than comparable S₀ increase

Solar forcing provokes an increase in tropical energy input because it is larger in the tropical mean than CO_2 forcing

The spatial structure of radiative forcing provokes tropical circulation changes...

... & the circulation responses over a range of models in the hierachy can be anticipated from energy transport requirements

The spatial structure of radiative forcing provokes tropical circulation changes...

... & the circulation responses over a range of models in the hierachy can be anticipated from energy transport requirements

Thank you!

CO₂ forces larger ITCZ shifts than comparable S₀ increase

Solar forcing provokes an increase in tropical energy input because it is larger in the tropical mean than CO_2 forcing