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If these models, despite their different
assumptions, lead to similar results, we
have what we can call a robust theorem
that is relatively free of the details of the
model. Hence, our truth is at the
intersection of independent lies.

Richard Levins (1966).

The strategy of model building in population biology. In E. Sober (Ed.),
Conceptual issues in evolutionary biology (First ed., pp. 18-27). Cambridge, MA:
MIT Press.



WCRP Grand Challenge on Clouds Circulation and Climate Sensitivity:

What controls the position, strength and variability
of tropical rain belts?

Lesson from APE/CFMIP/CMIP5:

CHANGE IN PRECIPITATION

s Clouds by themselves do a lot...

Lesson from the hierarchy:

CMIP5 fixed SSTs Interactive SSTs and seasonal cycle
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How much depends on what else is allowed to change...



TRACMIP fills a gap in the CMIP5 hierarchy

1.

Targets the essential dynamics of
tropical rain belts with interactive SST
(slab ocean)

Considers the main forced cycles
(diurnal and annual)

Compares zonally symmetric (ITCZ)
to zonally asymmetric (“monsoon”)
case

Considers both future (CO,) and past
(precession) forcings



TRACMIP:
Tropical Rain belts with an Annual cycle and Continent
Model Intercomparison Project

EXPERIMENT LAND ECCENTRICITY o Ocean energy transport
NAME CONFIGURATION

AquaCTL none present-day €= v

AN

0

AquadxCO, none 4 times €
present day

LandCTL jello tropical present-day €=0 v 2ol Tracmiphiesent-day
Tracmip with continent
Land4xCO, jello tropical 4 times e=0 v G5 305 Eq  3on oo
present day Heat convergesin the NH:
LandOrbit jello tropical present-day €=0.02 v inter-hemispheric asymmetry!
*Alnican® continerd
no OHT;

small heat capacity;
brighter color;
double evaporative
resistance.




AquaCTL: Earth-like basic state, CMIP5-like spread
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Control Annual Mean Precipitation:
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LandCTL: Large response to the inclusion of a continent
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The ensemble spread!
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Climate sensitivity (K)

Aqua4xCQO: global mean anomalies
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« Spread similarto CMIP5

* Hint of dependence of climate sensitivity to basic
state



Aqua4xCQO2: annual mean,
zonal mean anomalies

Surface temperature Precipitation
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* In the comprehensive GCMs (only):
o “Arctic amplification” (without ice or ocean circulation...
T-dependent water/cloud feedbacks?)
o Poleward displacement of the ITCZ



AquadxCQO2: seasonality of ITCZ
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Energetic Constraints on the ITCZ:
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The EFE is determined by The relationship between

both the transport across TRA, and the ITCZ carries
and the input into the over from the seasonal
equator of moist static cycle to climate change

energy (Schneider & Co) (Donohoe & Co)




Energy flux changes are expected with an ITCZ shift:

The northward shift of the ITCZ is muted in SON.

How good a match is the EFE?
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AquaControl AquadxCO, Energy Frameworks (1)
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ITCZ

AquaControl AquaControl
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CAVE MINUTIAS!
The devil In the detaills...

IPSL Annual Mean Atmospheric Energy Transport
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How does the presence of land affect the response of
the zonal mean ITCZ to CO,?
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LandOrbit: a meridional shift of the ITCZ is
robustly realized only over ocean
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Land precipitation is reduced
when insolation is reduced,
and increased when insolation
IS Increased!



Conclusions:

1. TRACMIP is a new community “tool” that targets the
essential dynamics of tropical rain belts and the distinction
between (zonal mean) ITCZ and monsoons.

2. ltis already (voigt et al. JAMES 2016) providing insights on how
+ warming amplifies inter-hemispheric asymmetries in
temperature and precipitation
+ & reduces the seasonal range of the ITCZ
+ “land” affects the sensitivity of the ITCZ to CO,
+ “land” responds differently than the ITCZ to both CO, and
orbital forcings.

3. The existence of TRACMIP speaks volumes about the
generosity and commitmentof the climate community!

4. Much more to explore: contact us at tracmip@gmail.com!




