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Evaluation and Metrics
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Countervailing Metrics: The Example of an
Emergent System Property (Historical Global
Temperature Change) versus a Fundamental
Process Property (Rain Production Rate)
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From Forster et al. in Journal of Geophysical Research: Atmospheres
Volume 118, Issue 3, pages 1139-1150, 6 FEB 2013 DOI: 10.1002/jgrd.50174
http://onlinelibrary.wiley.com/doi/10.1002/jgrd.50174/full#jgrd50174-fig-0007
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Future climate change will be driven more by
greenhouse gases than aerosols, as aerosols have
shorter lifetime than dominant anthropogenic
greenhouse gases and aerosols likely to be
regulated by air-pollution policy. “Masking” by
aerosols will be less. Projecting warming requires
knowledge of sensitivity.



Cloud tuning in a coupled climate model: Impact on 20th century warming

In GFDL CM3, aerosol indirect
effect (cooling by cloud-
aerosol interactions) depends
strongly on volume-mean
drop radius at which
precipitation forms

Observations show volume-mean drop radius for precipitation formation
around 10-12 um (Gerber, 1996, J. Atmos. Sci.; Pawlowska and Brenguier,
2003, J. Geophys. Res.; Boers et al., 2006, Q/RMS)

Geophysical Research Letters
Volume 40, Issue 10, pages 2246-2251, 27 MAR 2013 DOI: 10.1002/grl 50232 0ased on Golaz et al. (2013)

http://onlinelibrary.wiley.com/doi/10.1002/grl.50232/full#qrl50232-fig-0001




Cloud tuning in a coupled climate model: Impact on 20th century warming
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Geophysical Research Letters based on Golaz et al. (2013
Volume 40, Issue 10, pages 2246-2251, 27 MAR 2013 DOI: 10.1002/grl.50232 ’ ( )

http://onlinelibrary.wiley.com/doi/10.1002/grl.50232/full#grl50232-fig-0003




Evaluating cloud tuning in a climate model with satellite observations
PDFs of Radar Reflectivity (%dBZ1)
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Geophysical Research Letters
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This diagnostic
can be used
with many
formulations
for cloud
microphysics.
Summary
statistics (bias,
RMSE,
correlation
coefficients
against A-Train
provide
process metrics
for climate
models.
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Figure 3 from Suzuki et al 2015: Evaluation of the Warm Rain Formation Process in Global Models

with Satellite Observations. J. Atmos. Sci., 72, 3996—-4014, doi: 10.1175/JAS-D-14-0265.1.



Portrait Diagrams for Large-Scale Fields
and Process-Level Metrics
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IPCC ARS Fig. 9-7 (2013, Cambridge University Press)
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Building a Portrait for Evaluating Physical Processes in

Climate Models

Uncertainties in climate sensitivity related to cloud feedbacks
are apparent in distinct cloud systems that can be evaluated
with LES and CRMs, in turn evaluated against observations.
GCM/SCM comparison with process-based skill scores can

paint part of the portralt
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Conclusions

Process models and observations add a dimension to
the hierarchy of complex and process models.

Controls on critical and still poorly understood aspects
of the climate system (forcing, sensitivity) should be
identified in complex models.

|dealized models can be guides to doing so and
generate hypotheses.

Once identified, these controls should be evaluated
against process models and observations.

Process realism should join means and variability
among the evaluation metrics for complex models.



