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"If you have a problem that you do not know how to solve, then there exists a simpler
problem that you do not know how to solve, and your first job is to find it."
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A long tradition of hierarchical thinking

A Numerical Method for Predicting the Perturbations [
of the Middle Latitude Westerlies

Introduction

In an article by onc of the co-authors,?® a

By J. G. CHARNEY and A. ELIASSEN! program for numerical weather prediction was

The Institute for Advanced Study, Princeton, New Jersey? OUdl.ned mn WhICh 1L was Pr(?POSCd to COIlSldCI'

a hierarchy of atmospheric models whose

‘ (Manascript received Aprll 16 1949 , study would lead to an increasing com-

prehension of the physical and numerical
aspects of the forecast problem. The most
elementary model was a barotropic atmosphere
in which the motion is regarded as consisting
of small perturbations on a zonal current. The
problem of forecasting these perturbations
constitutes the simplest non-trivial instance
of a numerical forecast problem. It is the
purpose of the present article to discuss this
case as a step towards the realization of the
... .and was very much part of Charney’s mental make up. general program. It is also hoped that the treat-
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“We believe, therefore, that the equilibrium surface global warming due to doubled CO: will be in the
range 1.5°C to 4.5°C, with the most probable value near 3°C.” Charney et al., 1979

Charney et al.”79

4.0 * Reasoning from Radiative Convective Equilibrium,
(RCE) corroborated by global computations with
Carbon Dioxide and Climate: then emerging general-circulation models
o H2 A Scientific Assessment
* Most early RCE calculations neglected weaker
35 eH1 e ——— bands of CO», including these increased the
‘ S s N forcing and hence the ECS, Charney et al.,
« i:;?f;;;j;?;;;g:gg;;mmPhymlSa_m actually corrected liberally for this. Early RCE
A M1 M2 R estimates of FAT varied between 0.75 Wm™2 and
O .0Wm-,

* Lapse-rate feedbacks were not included, but
2.5 about 0.3 Wm was added to account for surface
albedo feedbacks.

M3 * Uncertainty was inflated

NATIONAL ACADEMY OF SCIENCES
Washington, D.C. 1979
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The field moved on to study more complex problems

Charney et al.’79 Cess et al.’89
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Schlesinger and Mitchell documented the diversity
of ECS estimates, in their summary water vapor and
lapse rate feedbacks give dT = 2.85 K, Clouds
contributed about | K, and overall ECS was 4.2 K
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Ground Cloud Cloud
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In a systematic intercomparision Cess et al showed that differences in how
clouds responded to warming explained most of the change.

Schlesinger and Mitchell, Reviews of Geophysics, 1987, Cess et al., Science, 1989



... d form of stasis

Charney et al.”79 Cess et al.’89 Vial et al.”13
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’ ... modern models scatter as much as they did 25 years ago.
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... Which tends to mask great progress (and an expanded model hierarchy)

... we now have a better idea of which clouds, and the mechanisms involved. A key one
¢ is how cloudiness at the base of convective layers responds to the intensity of mixing.
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Aqua Planets
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the spread is not reduced, but ECS tends to be smaller ...

B. Medeiros, Stevens, B., Bony, Climate Dynamics (2014)



These basic interactions between deep and shallow convection should be apparent in RCE

Cloud cover & surface winds Precipitation (mm day™)
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The simulations hint that basic elements of the thermal structure of the atmosphere are more dependent on
the representation of deep convection than they are on continents, the carbon cycle, and so on ...
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These basic interactions between deep and shallow convection should be apparent in RCE
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RCE estimates of ECS using comprehensive models is similar to the
range of early estimates, with fixed cloud amount.
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This finding opens the door to other, more fundamental approaches.
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Changes in the convection influence large-scale organization
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... and this has a much bigger influence on estimates of ECS
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... Instability of the sensitivity parameter is also evident in other models

Min Max Average
MPI 2.1 32.9 2.4
IPSL -5.2 555 3.9
NCAR -7.4 13.3 3.5

|. Even for a very simple problem the uncertain representation of
clouds and convection leads to a very large range in the radiative

response to forcing.
2. The instability in the sensitivity parameter appears related to the

emergence of organization.

But the real advantage of RCE is that it is amenable to more
fundamental approaches.
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... little evidence of a structural dependence on domain size
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First estimates of ECS using a convection resolving model
in RCE
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Aggregation is essential to stabilize the climate in the UCLA-LES

Aggregation leads to much drier areas in simulations
with resolved deep convection
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But strong SW (low?) cloud feedbacks give a much larger (3.8) ECS
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unfortunately the simulations still aren’t able to resolve shallow convection ... but if they did they might not aggregate ...
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... there is a case to be made that realism is a distraction.
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... ECS estimates for RCE

451
oH2 o
35 oH1 * ECS estimates in RCE still encompass a tremendous
range.
< | e ) °
4 fua1 m2 » Large-Scale convective aggregation plays an important
s ) . o .
) role, also in stabilizing the climate.
2.5-
o o- * We've settled on a simpler problem that we can solve,
w M3 o and perhaps an even simpler one (fixed cloud RCE) that
‘m_ we must solve.
o O ]
1.5+

I ... the hierarchy of problems we solve is as important as the hierarchy of models we employ.

Max-Planck-Institut
fur Meteorologie




