Asia – Experience of APHRODITE daily gridded precipitation analyses

AKIYO YATAGAI, PH.D. SOLAR-TERRESTRIAL RESEARCH INSTITUTE, NAGOYA UNIVERSITY

Outline of the Talk

- 1. APHRODITE project
- 2. Algorithm
- 3. Extreme Analyses
- 4. Further developments for hydrological applications
- 5. Summary

(Recommendation and requests)

Asian Precipitation -- Highly Resolved Observational Data Integration Towards Evaluation of the Water Resources (APHRODITE's Water Resources)

Akiyo Yatagai¹, Akio Kitoh², Kenji Kamiguchi², Osamu Arakawa², Atsushi Hamada¹, Natsuko Yasutomi¹, Tsugihiro Watanabe¹, Jumpei Kubota¹, Makoto Taniguchi¹

- 1. Research Institute for Humanity and Nature (RIHN), Kyoto, Japan
- 2. Meteorological Research Institute (MRI), Japan Meteorological Agency (JMA), Tsukuba, Japan

Background

In 2005

Regional impact of climate changes (global warming) are widely concerned, and simulations are made by high resolution climate models.

- For model validation : High spatial resolution, quantitative accuracy
- For statistical downscaling: Long-term data is reqired
- Evaluation of water resources: Gridded precipitation data
- Analysis of extreme phenomena: High resolution (spatial & temporal) Accuracy Long-term data
- Water resource in the mountains: precipitation grid data, estimate of snow, temperature

Do we have enough data?

Available grid precipitation data

Dat	taset	Source	Domain	Time Res.	Horizontal Res.	Period
Legates and Willmott		Raingauge	Global Land	Climatolo gy	0.5 deg	1921-1980
GPCP CMAP		Merged (GTS raingauge, IR, MW)	Global	monthly	2.5 deg	1979-
GPCP_pen CMAP_pen		Merged	Global	5-day	2.5 deg.	1979-
GPCP1DD		IR	Global	Daily	1 deg.	1997-
CRU PREC/L		Raingauge	Global Land	Month	0.5 deg.	1900-1998 1948-2001
TRMM		PR,TMI,VIRS	37N-37S	Path	4.3km(PR)	1997.12-
		3B42(Ver6)	50N-50S	3-hr	0.25 deg.	1998-
CMORPH		MW+IR(cloud m.)	60N-60S	30 min.	0.25 deg.	2002-
GSMaP_TMI		TRMM/TMI	40N-40S	Daily	0.25deg.	1998-2005
GSMaP_MVK		MW+IR	60N-60S	Hrly	0.1 deg.	2005.7
Regic APHRODIT		E Raingauge	Regional	Daily	0.5 deg.	1978-2003.7 (1961-2003Cina)
Analysis			Asia	C).25/0.5 deg	1951-2007
711019313	India	Raingauges	Regional	Daily	1 deg.	1951-2004
Reanalys es	ECMWF JRA NCEP	Atmosheric observation + 4DDA (model)	Global	6 hrly	0.5~2.5 deg.	1957-2002 1979- 1948-

Can we use satellite-based daily precipitation data to study extreme events?

Input of rain gauges

APHRODITE: Constructing a Long-term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges (Yatagai et al., 2012, BAMS)

APHRODITE algorithm

Yatagai et al. (2009, 2012)

Strategy to Define Analysis of Daily Precipitation

- Step 1: Define daily climatology;
- Step 2: Analysis of ratio to daily climatology; (Orographic effect)
- Step 3: Define daily grid precipitation by multiplying the Climatology and the Ratio;

- APHRODITE Interpolation: Shepard (1968), Willmott et al. (1985)
- Xie et al. (2007, JHM) Interpolation: OI

Kathmandu

QC tool with ogle Earth

1				
Example: Appuel				
precipitation in 1995 at				
Kathmandu AP.				

Directly obtained from Department of Hydrometorology, Nepal

(m/u)	7300
Valid obs rate	10
Name	KATHMANDU AIRPORT
Station NO	1030
Data Source	NPL_12
Longitude	85.36
Latitude	27.70

1673.80

r global dataoot		
Ann. Precip .(mm.)	167.40	
Max. Precip .(mm/d)	7.40	
Valid obs rate	1.0	
Name	KATHMANDU AIRPORT	
Station NO	NP000444540	
Data Source		
Longitude	85.36	
Latitude	27.70	

GTS base real-time data

A global dataset

Ann. Precip.(mm)	153.40
Max. Precip.(mm/d)	04.90
Valid obs rate	0.0

Publically available GTS-based datasets are 1/10 of our data.

⇒Error information by QC should be exchanged. (We do not want to blame anybody.) Feedback from local meteorologists and data developers are important.

Quality Control

Quality Control

(b)

Number of Input data for APHRO V1003R1 & V1101.

We used about 2.3 times to 5.5 times data compared to GTS network.

Trade-off Issues

- We used all data that passed our QC, because we decided to use the same scheme (including QC) throughout the period (even we got off-line data, we still used GTS-based data)
- GTS sometimes reports as "0 mm" for missing value, that is a cause of underestimation.
- 1-day shift is seen between two data sources. That affects smoothed PDF, but total value is OK.

(our algorithm is first designed for quantified daily data for hydro/agricultural purposes)

 A country used different 24-hr accumulation time (end-of-aday) for synoptic network and climatological network. That makes extreme analyses difficult. => We may contribute to WMO observation guideline.

(a)-(c) June to Figure 6: September the Himalayas precipitation around (mm/4months). (a) APHRO_V1101, (b) GPCC full ver.4, and (c) simple interpolation result of GTS data by Shepard (1968). (d) Red: areal average (82-92E, 26-28N) of APHRO_V1101 daily precipitation, and Black: the same with interpolation of GTS but for data. Red Rectangles in (a) and (c) represent the domain to calculate the areal mean precipitation for (d).

interpolation algorithm in Nepal (upper) and Kalimantan Is. (lower) Shown are topography (left) and mean daily precipitation withou (middle) and with (right) considering local topography.

Figure 7: Mean annual precipitation for 1990–2007 (18 years). (a) 0.25°APHRO_V1003R1; (b) GTS data analysis employing an interpolation method similar to that used for (a). (c) Difference between (b) and (a).

Arakawa et al. (2011), Yatagai et al. (2012)

Release of APHRO Data

Outline of the Talk

- 1. APHRODITE project
- 2. Algorithm
- 3. Extreme Analyses
- 4. Further developments for hydrological applications
- 5. Summary & Comments

©Kamiguchi (MRI/JMA)

Comparison between APHRO_EA and Radar AMeDAS in Japan

Development of APHRO_JP, the first Japanese high-resolution daily precipitation product for more than 100 years

Kenji Kamiguchi¹, Osamu Arakawa¹, Akio Kitoh¹, Akiyo Yatagai², Atsushi Hamada² and Natsuko Yasutomi²

¹ Meteorological Research Institute, Ibaraki, Japan ² Research Institute for Humanity and Nature, Kyoto, Japan

- We constructed historical (1900-) high-resolution (0.05x0.05 degree) daily precipitation data over Japanese land area.
- The product can be used for statistical analysis of heavy precipitation up to about 150 mm/day, over a long term period (≥ 100 years). APHRO_JP enables diverse research, including validation of meso-scale models and analysis of the longterm extreme precipitation trend in Japan.

60 stable stations/1000 AMeDAS stations

Figure 1. Location of rain gauge and JMA-Radar sites (blue square). Black dots are AMeDAS rain gauges deployed after 1977, whereas red dots show JMA surface observatory rain gauge which have existed since 1900.

Figure 4. Annual mean precipitation (mm/day) from 1989 to 2007.

Figure 2. Historical changes in the number of available rain gauges (bottom), annual mean and maximum daily precipitation (middle), and the ratio of annual maximum daily precipitation to annual mean daily precipitation (top).

Outline of the Talk

- 1. APHRODITE project
- 2. Algorithm
- 3. Extreme Analyses
- 4. Further developments for hydrological applications
- 5. Summary & Comments

Middle East version and model validation

Yatagai, Xie and Alpert (2008) Kitoh, Yatagai and Alpert (2008) Yatagai, Kimura, Kitoh, Watanabe (2006) Proceedings for International Symposium on Water and Land Management for Sustainable Irrigated Agriculture, Turkey

Improving climatology over the Himalayas

TRMM/PR 10-year composite

(mm/yr)

Further analysis for station network density

- Spatial Correlation (network density) study
 - Following Xie et al. (2007), a cross validation of the interpolation technique used in APHRODITE daily precipitation was conducted.
 - 1) China
 - 2) Monsoon Asia

This strategy may answer the old WMO technical report statistics like.. "How many station data is necessary to make 5x5 degree monthly precipitation?"

Zhao and Yatagai (2013)

Recommendations & requests

- Make a network of exchange QC information
- We collect user's email information (by GCOS guideline), but recently security issues happened.
- Clarify the strategy of this community
 - Station extreme?

(if you want to use APHRODITE for this purpose please contact me!)

- Hydrological extreme?

Recommendation & requests

<For users>

- Pay attention to NOG or RSTN
 - For trend analysis
 - For satellite comparison (error estimation!)
 - \Rightarrow Only use grid boxes with raingauges
- <For WMO/CCI or others>
- Clarify 24-hr accumulation time
- Educate for reporting "missing values"
- Let's renew idealized observation network density for extreme events! (at least daily precipitation)
 - -- that can be possible for data holders and researchers with enough analysis techniques.

References

- Arakawa, O. and A. Kitoh (2011):Intercomparison of the Relationship between Precipitation and Elevation among Gridded Precipitation Datasetsover the Asian Summer Monsoon Region, Global Environmental Research, 15, 109-118.
- Kamiguchi, K., O. Arakawa, A. Kitoh, A. Yatagai, A. Hamada, and N.Yasutomi, (2010): Development of APHRO_JP, the first Japanese high-resolution daily precipitation product for more than 100 years, *Hydrological Research Letters*, 4, 60-64.
- Yatagai, A., Xie, P., Kitoh, A. (2005): Utilization of a new gauge-based daily precipitation dataset over monsoon Asia for validation of the daily precipitation cliamtology simulated by the MRI/JMA 20-km-mesh AGCM, SOLA, 1, 193-196, *doi:10.2151/sola.2005-050*.
- Yatagai, A., and H. Kawamoto (2008): Quantitative estimation of orographic precipitation over the Himalayas by using TRMM/PR and a dense network of rain gauges, *SPIE, 7148-11,* doi:10.1117/12.811943.
- Yatagai, A., O. Arakawa and K. Kamiguchi, H. Kawamoto, M. I. Nodzu, A. Hamada (2009): A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges, *SOLA*, *5*, *137-140*, doi:10.2151/sola.2009-035.
- Yatagai, A., K. Kamiguchi, O. Arakawa, A. Hamada, N. Yasutomi and A. Kitoh (2012): APHRODITE: Constructing a Long-term Daily Gridded Precipitation Dataset for Asia based on a Dense Network of Rain Gauges, *Bulletin of American Meteorological Society*, **93**,1401-1415,
- doi:http://dx.doi.org/10.1175/BAMS-D-11-00122.1.
- Yatagai, A., T. N. Krishnamurti, V. Kumar, A. K. Mishra and A. Simon (2014): Use of APHRODITE raingauge based precipitation and TRMM3B43 products for improving Asian monsoon seasonal precipitation forecasts, *J. Climate*, 27, 1062-1069.
- Zhao, T. and A. Yatagai (2013): Evaluation of TRMM 3B42 product using a new gauge-based analysis of daily precipitation over China, *Int. J. Climatol.*, DOI: 10.1002/joc.3872.