The ISTI: Land surface air temperature datasets for the 21st Century

International Surface Temperature Initiative

WRCP Extremes, Feb 2015

Kate Willett, with thanks to many Initiative participants

The real world observing system is not perfect ...

US Climate Reference Network website

Its more like these ...

More examples on www.surfacestations.org

Effects of Changes that are not of Climate Origin

STATION MOVE: EXPOSURE AND MICROCLIMATE = abrupt change in mean and diurnal extremes - may affect seasonal cycle extremes

SHELTER CHANGE: EXPOSURE = abrupt change in diurnal extremes - may affect seasonal cycle extremes

OBSERVING PRACTICE CHANGE: SAMPLING = abrupt change possible in mean and extremes

INSTRUMENT CHANGE: CALIBRATION = abrupt change in mean and possibly extremes

LANDUSE CHANGE: EXPOSURE AND MICROCLIMATE = gradual change in mean and diurnal extremes - may affect seasonal cycle extremes

Inhomogeneities: annual mean minimum temperature at Reno, Nevada, USA

Underlying these are four fundamental issues ...

•A lack of **traceability** to known standards and original hard copy data sources for most historical records

•A lack of adequate **documentation** of the (ubiquitous) changes (station location, shelter, observing time etc.) sufficient to characterize their changing measurement characteristics

•A lack of '**one-stop-shop**' for all land meteorological data (like ICOADS for land) – both raw and CDR/value-added-products

•A lack of set **benchmarks** with which to comprehensively test Climate Data Record development

No doubt that it is warming – the rate and temporal / spatial details are the issue

Is our climate changing?

What about the cows?

ISTI: Creating a framework to enable advances

1.Basic environmental data provision

2.Benchmark assessment of uncertainty relating to methodological choices

3. User advice

Step 1: Data rescue and provision

International Surface Temperature Initiative

Jay Lawrimore, Jared Rennie and Peter Thorne (2013) Responding to the Need for Better Global Temperature Data, EOS, 94 (6), 61–62 DOI: 10.1002/2013EO060002

Reconstructions over the Earth

www.met-acre.org

International Surface Temperature Initiative

ISTI Stage 3 vs GHCNv3 data

More than a little better?

Step 2: Benchmarking and Assessment

• With real world data we do not have the luxury of knowing the truth – we CANNOT measure performance of a specific method or closeness to real world truth of any one data-product.

• We CAN focus on performance of underlying algorithms (AKA software testing)

• Consistent synthetic test cases, simulating real world noise, variability and spatial correlations potentially enable us to do this

Benchmarking Cycle

Create c.10 analog-error-worlds

-Simulate 'clean' spatio-temporal characteristics of actual stations underpinned by low frequency variability from a climate model to maintain plausible spatial correlation

 Add abrupt and gradual changepoints to approximate our best guess real world error structures

-Run homogenisation algorithms on the test data and assess ability to recover original 'clean' data

-Useful for further improvement of algorithms

Example use of benchmark data for USHCN

Benchmarking cycle

Willett, et al., 2014: A framework for benchmarking of homogenisation algorithm performance on the global scale, Geoscientific Instrumentation, Methods and Data Systems, 3, 187-200, doi:10.5194/gi-3-187-2014.

Daily Benchmarks for the USA using a GAM

Stations with temperature records from 1970 to 2011 in the contiguous USA: Blue = Focus stations with no more than a quarter of the record missing

Step 3: Serving products and aiding users

International Surface Temperature Initiative What happens if you build a state of the art playground and nobody turns up?

- •The Initiative will have provided a framework which should be conducive to scientists coming and having a 'play'
- •The Initiative cannot compel scientists to 'come and play'
- •Nor does it have dedicated funding support to offer ...

Q & A

www.surfacetemperatures.org

Bull. Amer. Met. Soc. doi: 10.1175/2011BAMS3124.1

General.enquiries@surfacetemperatures.org

Data.submission@surfacetemperatures.org

Parallel Observations Science Team (POST)

(http://www.surfacetemperatures.org/databank/parallel_measurements)

Long instrumental climate records are usually affected by non-climatic changes, such as relocations and changes in instrumentation, instrument height or procedures. They can hamper the assessment of trends and variability in climate records by distorting the climate signal, especially when it comes to trends in extreme weather.

The most direct way to study the influence of these non-climatic changes and to understand the reasons for these biases is the analysis of parallel measurements representing the old and new situation (for example instruments or locations).

A GLOBAL PARALLEL CLIMATE DATASET

Current studies of non-climatic changes using parallel data are limited to local and regional case studies. However, the effect of specific transitions depends on the local climate and the most interesting questions are about the systematic large-scale biases produced by transitions that occurred in many regions. Important potentially biasing transitions are the adoption of Stevenson screens or the introduction of automatic weather stations. Thus a large global parallel dataset is highly desirable as it enables the study of systematic biases in the global record.

A standard Stevenson screen and a historical French screen measuring in parallel at an observatory in Basel, Switzerland.

Multiplicity of data products

- Quantifying structural uncertainty is key
- Raw data is far from traceable to international measurement standards.
- Data artifacts are numerous and have myriad causes
- .Metadata describing station histories is patchy at best and often non-existent
- .Data is discrete in both space and time
- •No "how to" ... rather very many cases of "it may work ..."
- .Multiple subjective decisions required even in automated procedures (thresholds, peric
- .Different approaches may have different strengths and weaknesses

No single dataset can answer all user needs

International Surface Temperature Initiative

Stage 2 – common format

			n O Mozilla Firefox				
			Google Image Result for http ×	Messenger Express	X Untitled Document X	ftp://ftp.ncdcietnam_stage2 × L IEDRO - Educatio	n - Data Re × + *
		and the second	(1) ftp://ftp.ncdc.noaa.gov/pub/	data/globaldatabank/daily/sta	ge2/Vietnam/vietnam_stage2	😭 🔻 🧭 🤇 🚼 🕈 microsoft excel icon	۹) 🏚 🖸 ۲
			Capture ? Help	211			
			CAO_BANG 2 CAO_BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980101 - 9 301/105/101/102/103 18980102 -	9999 -9999 -9999 9999 -9999 -9999	C
			CAO_BANG 2 CAO_BANG 2 CAO_BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980103 - 9 301/105/101/102/103 18980104 - 9 301/105/101/102/103 18980105 -	9999 -9999 -9999 9999 -9999 -9999 9990 -9000 -0000	
			CAO BANG 2 CAO BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980106 - 9 301/105/101/102/103 18980107 -	9999 -9999 -9999 9999 -9999 -9999	
			CAO_BANG 2 CAO_BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980108 - 9 301/105/101/102/103 18980109 -	9999 -9999 -9999 9999 -9999 -9999	
			CAO_BANG 2 CAO_BANG 2 CAO_BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980110 - 9 301/105/101/102/103 18980111 - 9 301/105/101/102/103 18980112 -	9999 -9999 -9999 9999 -9999 -9999 0000 -0000 -0000	
			CAO BANG 2 CAO BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980113 - 9 301/105/101/102/103 18980114 -	9999 -9999 -9999 9999 -9999 -9999	
Drovopar		rsion control	CAO_BANG 2 CAO_BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980115 - 9 301/105/101/102/103 18980116 -	9999 -9999 -9999 9999 -9999 -9999	
Provenai	ice / ve		CAO BANG 2 CAO BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980117 - 9 301/105/101/102/103 18980118 - 9 301/105/101/102/103 18980119 -	9999 -9999 -9999 9999 -9999 -9999 9999 -9999 -9999	
flags		-	CAO BANG 2 CAO BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980120 - 9 301/105/101/102/103 18980121 -	9999 -9999 -9999 9999 -9999 -9999	
nags			CAO_BANG 2 CAO_BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980122 - 9 301/105/101/102/103 18980123 -	9999 -9999 -9999 9999 -9999 -9999	
			CAO_BANG 2 CAO_BANG 2 CAO_BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980124 - 9 301/105/101/102/103 18980125 - 9 301/105/101/102/103 18980126 -	9999 -9999 -9999 9999 -9999 -9999 9999 -9999 -9999	
			CAO BANG 2 CAO BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980127 - 9 301/105/101/102/103 18980128 -	9999 -9999 -9999 9999 -9999 -9999	
CAU BANG 22.6/00	106.2500	-4444 3011102110111051	CAO_BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980129 - 301/105/101/102/103 18980130 -	9999 -9999 -9999 9999 -9999 -9999	
CAO_BANG 22.6700	106.2500	-9999 301/105/101/102/	103 18980221 -9999	-9999 -9999	9 105/101/102/103 18980201 - 105/101/102/103 18980201 - 105/101/102/103 18980202 -	9999 -9999 -9999 9999 -9999 -9999 9999 -9999 -9999	
CAO_BANG 22.6700	106.2500	-9999 301/105/101/102/	103 18980222 -9999	-9999 -9999	9 105/101/102/103 18980203 - 105/101/102/103 18980204 -	9999 -9999 -9999 9999 -9999 -9999	
CAO_BANG 22.6700	106.2500	-9999 301/105/101/102/	103 18980223 -9999	-9999 -9999	9 105/101/102/103 18980205 - 105/101/102/103 18980206 -	9999 -9999 -9999 9999 -9999 -9999	
CAO_BANG 22.6700	106.2500	-9999 301/105/101/102/	103 18980224 -9999	-9999 -9999	105/101/102/103 18980208 - 105/101/102/103 18980208 - 105/101/102/103 18980209 -	9999 -9999 -9999 9999 -9999 -9999	
CAO_BANG 22.0700	100.2500	-9999 301/103/101/102/	103 10900225 -9999		105/101/102/103 18980210 - ,105/101/102/103 18980211 -	9999 -9999 -9999 9999 -9999 -9999	
			CAO_BANG 2 CAO_BANG 2 CAO_BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980212 - 9 301/105/101/102/103 18980213 - 9 301/105/101/102/103 18980214 -	9999 -9999 -9999 9999 -9999 -9999 9000 -0000 -0000	
			CAO BANG 2 CAO BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980215 - 9 301/105/101/102/103 18980216 -	9999 -9999 -9999 9999 -9999 -9999	
			CAO_BANG 2 CAO_BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980217 - 9 301/105/101/102/103 18980218 -	9999 -9999 -9999 9999 -9999 -9999	
			CAO_BANG 2 CAO_BANG 2 CAO_BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980219 - 9 301/105/101/102/103 18980220 - 9 301/105/101/102/103 18980221 -	9999 -9999 -9999 9999 -9999 -9999 9000 -0000 -0000	
			CAO_BANG 2 CAO_BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980222 - 9 301/105/101/102/103 18980223 -	9999 -9999 -9999 9999 -9999 -9999	
			CAO_BANG 2 CAO_BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980224 - 9 301/105/101/102/103 18980225 -	9999 -9999 -9999 9999 -9999 -9999	
			CAO_BANG 2 CAO_BANG 2 CAO_BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980226 - 9 301/105/101/102/103 18980227 - 9 301/105/101/102/103 18980228 -	9999 -9999 -9999 9999 -9999 -9999 9999 -9900 -9999	
			CAO_BANG 2 CAO_BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980229 - 9 301/105/101/102/103 18980230 -	9999 -9999 -9999 9999 -9999 -9999	
			CAO_BANG 2 CAO_BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980231 - 9 301/105/101/102/103 18980301 -	9999 -9999 -9999 9999 -9999 -9999	
			CAO_BANG 2 CAO_BANG 2 CAO_BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980302 - 9 301/105/101/102/103 18980303 - 9 301/105/101/102/103 18980304 -	9999 -9999 -9999 9999 -9999 -9999 9999 -9999 -9999	
International			CAO BANG 2 CAO BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980305 - 9 301/105/101/102/103 18980306 -	9999 -9999 -9999 9999 -9999 -9999	
International			CAO_BANG 2 CAO_BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980307 - 9 301/105/101/102/103 18980308 -	9999 -9999 -9999 9999 -9999 -9999	
Surface			CAO_BANG 2 CAO_BANG 2 CAO_BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980309 - 9 301/105/101/102/103 18980310 - 9 301/105/101/102/103 18980311 -	9999 -9999 -9999 9999 -9999 -9999 9999 -9099 -9999	
			CAO_BANG 2 CAO_BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980312 - 9 301/105/101/102/103 18980313 -	9999 -9999 -9999 9999 -9999 -9999	
Iemperature			CAO_BANG 2 CAO_BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980314 - 9 301/105/101/102/103 18980315 -	9999 -9999 -9999 9999 -9999 -9999	
Initiativa	9/		CAO_BANG 2 CAO_BANG 2 CAO_BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980316 - 9 301/105/101/102/103 18980317 - 9 301/105/101/102/103 18980319 -	9999 -9999 -9999 9999 -9999 -9999	
muative			CAO_BANG 2 CAO_BANG 2 CAO_BANG 2	2.6700 106.2500 -999 2.6700 106.2500 -999	9 301/105/101/102/103 18980318 - 9 301/105/101/102/103 18980320 -	9999 -9999 -9999 9999 -9999 -9999	4
			CAO_BANG 2	2.6700 106.2500 -999	9 301/105/101/102/103 18980321 -	9999 -9999 -9999	

Stage 3 (under beta)

•Same format as stage 2

Initiative

- Optimised station merging of non-unique records
- •One unique version for each station recommended version for most users
- Forms basis for creation of benchmarking analog stations (see later)
- Provenance tracking ensures an unbroken chain

Station series example

Benchmarking cycle

Benchmarking example

•For USHCN (lower 48 states)

•100 member perturbed ensemble of the NCDC pairwise algorithm was run on 8 analogs (Williams et al., 2012, JGR-A, 117, D05116, doi:10.1029/2011JD016761)

Consideration solely of timeseries and trends

 Analyses that follow are for the hardest analog with frequent predominantly small breaks

c) Homogenized Data (NOAA/NCDC Pairwise Algorithm)

Implication when applied to real-world observed record that warming magnitude and spatial patterns for the USA are reasonably well captured with some regional 0.05 0.10 -0.20-0.10 -0.05 0.20 0.30 0.40 0.50 discrepancies Trend (°C / decade)

d) Homogenized Data (Berkeley Earth Surface Temperature Method)

Implication when applied to real-world observed record that warming is robust but magnitude is overestimated and spatial patterns not well captured for the USA

By analogy ...

The field is wide open ...

- We have thus far sampled only a small area of solution space which has many d.o.f
- •We need to far more fully explore the plausible solution space
- Many possibilities exist

Bottom line: Please please please come and play