EVALUATING MODEL-SIMULATED VARIABILITY IN TEMPERATURE EXTREMES

Jana Sillmann

Center for International Climate and Environmental Research – Oslo (CICERO)

WCRP Grand Challenge on Extremes data workshop, Sydney, Australia 25th-27th Feb 2015

Content

- Climate Extremes in Observations and Global Climate Models
- Percentile-based Threshold Indices
- Conclusion

Climate Extremes in Observations and Global Climate Models

Climate extremes indices defined by joint CCl/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI)(*http://etccdi.pacificclimate.org*)

Final Draft (7 June 2013)	Chapter 2	IPCC WGI Fifth Assessment Report

Box 2.4, Table 1: Definitions of extreme temperature and precipitation indices used in IPCC. After Zhang et al. (2011). The most common units are shown but these may be shown as normalized or relative depending on application in different chapters.

Index	Descriptive name	Definition	Units	Figures/Tables	Section
TXx	Warmest daily Tmax	Seasonal/annual maximum value of daily max temperature	°C	Box 2.4, Figure 1, Figures 9.37, 10.17, 12.13	Box 2.4, 9.5.4.1, 10.6.1.1, 12.4.3.3
TNx	Warmest daily Tmin	Seasonal/annual maximum value of daily minimum temperature	°C	Figures 9.37, 10.17	9.5.4.1, 10.6.1.1
TXn	Coldest daily Tmax	Seasonal/annual minimum value of daily maximum temperature	°C	Figures 9.37, 10.17, 12.13	9.5.4.1, 10.6.1.1, 12.4.3.3
TNn	Coldest daily Tmin	Seasonal/annual minimum value of daily minimum temperature	°C	Figures 9.37, 10.17, 12.13	9.5.4.1, 10.6.1.1
RX5day	Wettest consecutive five days	Maximum of consecutive 5-day precipitation	mm	Figures 9.37, 12.26, 14.1	9.5.4.1, 10.6.1.2, 12.4.5.5, 14.2.1

Percentile-based threshold indices

SILLMANN ET AL.: CLIMATE EXTREMES INDICES IN CMIP5

 Table 1. Core Set of 27 Extreme Indices Recommended by the ETCCDI. The Index R1mm Marked With * is Defined by ETCCDI for a User Specified Threshold Which is Set to 1 mm for This Study

Label	Index Name	Index Definition	Units	
TN10p Cold nights		Let TN_{ij} be the daily minimum temperature on day <i>i</i> in period <i>j</i> and let $TN_{in}10$ be the calendar day 10 th percentile centered on a 5 day window. The percentage of days in a year is determined where $TN_{ij} < TN_{ij} = 0$		
TX10p	Cold days	Let $TX_{ij} \subset TX_{in}10$ Let TX_{ij} be the daily maximum temperature on day <i>i</i> in period <i>j</i> and let $TX_{in}10$ be the calendar day 10 th percentile centered on a 5 day window. The percentage of days is determined where $TX_{ij} < TX_{in}10$	%	
TN90p	Warm nights	Let TN_{ij} be the daily minimum temperature on day <i>i</i> in period <i>j</i> and let $TN_{in}90$ be the calendar day 90^{th} percentile centered on a 5 day window. The percentage of days is determined where	%	
TX90p	Warm days	$TN_{ij} > TN_{in}90$ Let TX_{ij} be the daily maximum temperature on day <i>i</i> in period <i>j</i> and let $TX_{in}90$ be the calendar day 90 th percentile centered on a 5 day window. The percentage of days is determined where $TX_{ij} > TX_{in}90$	%	

Exceedance rate of the 10th and 90th percentile of daily minimum and maximum temperature \rightarrow percentage of days exceeding these thresholds

→ Can be robustly estimated for limited temporal and spatial data availability, thus good spatial coverage in observational based datasets (e.g., HadEX2, GHNDEX)

Temperature Extremes – 1981 to 2000

Figure 2. The 1981–2000 time mean of the annual minimum of TN (TNn, top panel) and maximum of TX (TXx, bottom panel) for HadEX2 and the CMIP5 multimodel ensemble median.

Chapter 9

Evaluation of Climate Models

based on Sillmann et al. 2013: Part 1. Model evaluation in the present climate, **°CICERO** JGR

JGR

Center for International Climate and Environmental Research - Oslo

INTERNATIONAL JOURNAL OF CLIMATOLOGY Int. J. Climatol. 34: 3304–3311 (2014) Published online 31 December 2013 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/joc.3899

Short Communication

Evaluating model-simulated variability in temperature extremes using modified percentile indices

J. Sillmann,^a* V. V. Kharin,^b F. W. Zwiers,^c X. Zhang,^d D. Bronaugh^c and M. G. Donat^e

^a Department of Geosciences, University of Oslo, Norway ^b Canadian Centre for Climate Modelling and Analysis, Victoria, BC, Canada ^c Pacific Climate Impacts Consortium, Victoria, BC, Canada

^e Pacific Climate Impacts Consortium, Victoria, BC, Canada

^d Climate Data and Analysis, Environment Canada, Toronto, ON, Canada

^e Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney, NSW, Australia

Percentile-based threshold indices

Bias-correction Methodology

Figure 1. Schematic illustration of the bias-correction methodology where the green and red curves indicate an observed and modelled temperature distribution, respectively. Both distributions have the same exceedance rate above their respective 90th percentile thresholds (green and red shaded areas). When bias correcting the mean of the model temperature distribution (orange curve) and applying the observed 90th percentile threshold for the indices calculation, the exceedance rate in the bias-corrected (b.-c.) model gives an indication of the discrepancy between the variability of the observed and model temperature distribution (green plus orange shaded area).

Percentile-based threshold indices Bias-correction with GHCN-Daily

Percentile-based threshold indices Bias-correction with GHCN-Daily

Percentile-based threshold indices Bias-correction with GHCNDEX

Center for International Climate and Environmental Research - Oslo

Conclusion

- more effort is required to fill the gaps in observation-based datasets to improve the evaluation of simulated temperature variability by the current model generation, particularly with respect to the extremes
- observational datasets of extremes indices (e.g. ETCCDI) should contain information about actual percentile values (i.e., 10th, 50th, and 90th percentiles)
- bias-correction methodology accounts for biases in the mean state, but shape of the distribution remains unchanged, which would imply that models underestimating temperature variability show a larger trend in exceedance rates, and models overestimating temperature variability would show a smaller trend with implication for the interpretation of future projections

Thank you!

