Assessment of Observational Uncertainty in Extreme Precipitation Events over the Continental United States Emily A. Slinskey¹, Paul C. Loikith¹, Duane E. Waliser², Alexander Goodman² - 1. Portland State University, Department of Geography, Portland, OR - 2. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA # MOTIVATION - Our climate is nonstationary and changing, not only in mean conditions but in extremes as well. - According to the National Climate Assessment (NCA), climate change is projected to alter the frequency, severity, and seasonality of extreme precipitation events across the US (USGCRP 2017). - Societal Implications: threats to property, agriculture, infrastructure, and human life Figure Source: NOAA NCDC based on data updated from Kennedy et al. 2010 and retrieved from the NCA 2014 # Research Goal: improve our ability to monitor and track extreme precipitation events over both space and time # Research Objectives: - present a gridded event-based climate indicator to capture the regional variability of extreme precipitation events across the U.S. - 2. Apply categorization scheme as a basis for a **dataset intercomparison** as an assessment of observational uncertainty # **METHODOLOGY** # EXTREME PRECIPITATION CATEGORIZATION SCHEME Precipitation Categories (P-Cats) based on fixed 3-day total accumulated precipitation thresholds P-Cat 1: 100 < P < 200mm P-Cat 2: 200 < P < 300mm P-Cat 3: 300 < P < 400mm P-Cat 4: 400 < P < 500mm P-Cat 5: P > (2012), BAMS **OBJECTIVE 1** **OBJECTIVE 2** DATASET INTERCOMPARISON [1998-2015] *MAGNITUDE* **FREQUENCY** Annual and seasonal cycle of the maximum P-Cat events Frequency of P-Cat occurrence annually, seasonally, and regionally across the CONUS Quantitative Assessment of Observational Uncertainty # **DATA** | Agency Source | Dataset | | Spatial Resolution | Data Source | |---------------|---------|--|--------------------|--| | NASA | TRMM | Tropical Rainfall Measuring Mission | 0.25° x 0.25° | satellite | | OSU | PRISM | Parameter-Elevation Regressions on
Independent Slopes Model | 0.04° x 0.04° | gridded <i>in-situ</i> station data | | NASA | MERRA-2 | Modern Era Retrospective-Analysis
Version 2 | 0.625° x 0.5° | global reanalysis | | NCEP | NARR | North American Regional Reanalysis | 32 km x 32 km | regional reanalysis with gauge data assimilation | | NOAA | GHCN-D | Global Historical Climatology
Network | | in-situ station data | # MEAN ANNUAL P-CAT FREQUENCY September, October, November # PERCENTILE-BASED P-CAT METHODOLOGY | Precipitation
Category | Percentile
Threshold | CONUS Return
Period | |---------------------------|-------------------------|------------------------| | P-Cat 1 | 99.2850 - 99.9521 | 1/140 | | P-Cat 2 | 99.9521 - 99.9937 | 1/2,090 | | P-Cat 3 | 99.9937 - 99.9986 | 1/15,940 | | P-Cat 4 | 99.9986 - 99.9996 | 1/69,030 | | P-Cat 5 | > 99.9996 | 1/250,140 | percentile thresholds (>99th percentile) P-Cat 1 93.41 < P < 173.02 mm P-Cat 2 173.02 < P < 245.71 mm P-Cat 3 245.71 < P < 302.20 mm P-Cat 4 302.20 < P < 349.24 mm P-Cat 5 P > 349.24 mm newly defined P-Cat thresholds # **CONCLUSIONS & FUTURE DIRECTION** ## Objective 1: Event-based Indicator of Change in Extreme Precipitation The most extreme precipitation events occur in the West due to landfalling atmospheric rivers and in the Southeast due to tropical systems ### Objective 2: Dataset Intercomparison - All datasets capture the principle patterns of P-Cat climatology - Higher resolution datasets most closely resemble gauge data, even after regridding - Variability persists across the five-dataset suite in the frequency, spatial extent, and magnitude of events ### Preliminary Results: Percentile-based P-Cat Definitions Some differences persist when extreme event definition is based on percentiles Results of this analysis provide both a complete and intuitive way to interpret and visualize extreme precipitation climatology across the CONUS and a clear intercomparison between various precipitation estimation products. ### **Future Direction:** - Employ this indicator as a climate model evaluation target - Investigate the meteorological mechanisms driving P-Cat events across the CONUS # THANK YOU! QUESTIONS? Support for this work was provided by the NASA Indicators for the NCA Program Contact: Emily Slinskey, slinskey@pdx.edu