

Assessment of Observational Uncertainty in Extreme Precipitation Events over the Continental United States

Emily A. Slinskey¹, Paul C. Loikith¹, Duane E. Waliser², Alexander Goodman²

- 1. Portland State University, Department of Geography, Portland, OR
- 2. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA

MOTIVATION

- Our climate is nonstationary and changing, not only in mean conditions but in extremes as well.
- According to the National Climate
 Assessment (NCA), climate change
 is projected to alter the frequency,
 severity, and seasonality of extreme
 precipitation events across the US
 (USGCRP 2017).
- Societal Implications: threats to property, agriculture, infrastructure, and human life

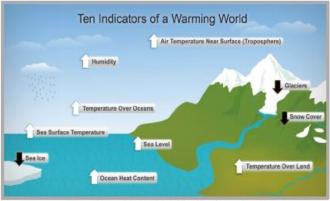


Figure Source: NOAA NCDC based on data updated from Kennedy et al. 2010 and retrieved from the NCA 2014

Research Goal:

improve our ability to monitor and track extreme precipitation events over both space and time

Research Objectives:

- present a gridded event-based climate indicator to capture the regional variability of extreme precipitation events across the U.S.
- 2. Apply categorization scheme as a basis for a **dataset intercomparison** as an assessment of observational uncertainty

METHODOLOGY

EXTREME PRECIPITATION CATEGORIZATION SCHEME Precipitation Categories (P-Cats) based on fixed 3-day total accumulated precipitation thresholds P-Cat 1: 100 < P < 200mm P-Cat 2: 200 < P < 300mm P-Cat 3: 300 < P < 400mm P-Cat 4: 400 < P < 500mm P-Cat 5: P > 500mm

(2012), BAMS

OBJECTIVE 1

OBJECTIVE 2

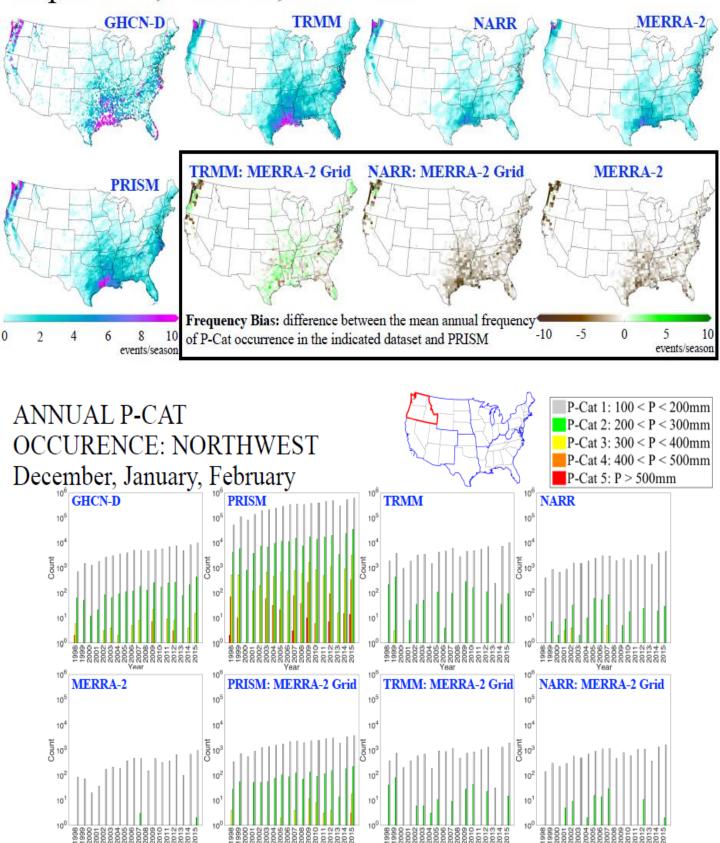
DATASET INTERCOMPARISON [1998-2015]

MAGNITUDE

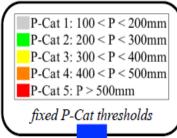
FREQUENCY


 Annual and seasonal cycle of the maximum P-Cat events

 Frequency of P-Cat occurrence annually, seasonally, and regionally across the CONUS


Quantitative Assessment of Observational Uncertainty

DATA


Agency Source	Dataset		Spatial Resolution	Data Source
NASA	TRMM	Tropical Rainfall Measuring Mission	0.25° x 0.25°	satellite
OSU	PRISM	Parameter-Elevation Regressions on Independent Slopes Model	0.04° x 0.04°	gridded <i>in-situ</i> station data
NASA	MERRA-2	Modern Era Retrospective-Analysis Version 2	0.625° x 0.5°	global reanalysis
NCEP	NARR	North American Regional Reanalysis	32 km x 32 km	regional reanalysis with gauge data assimilation
NOAA	GHCN-D	Global Historical Climatology Network		in-situ station data

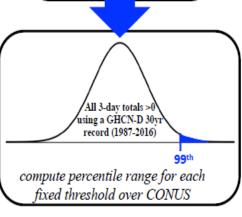
MEAN ANNUAL P-CAT FREQUENCY September, October, November

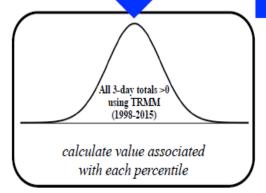
PERCENTILE-BASED P-CAT METHODOLOGY

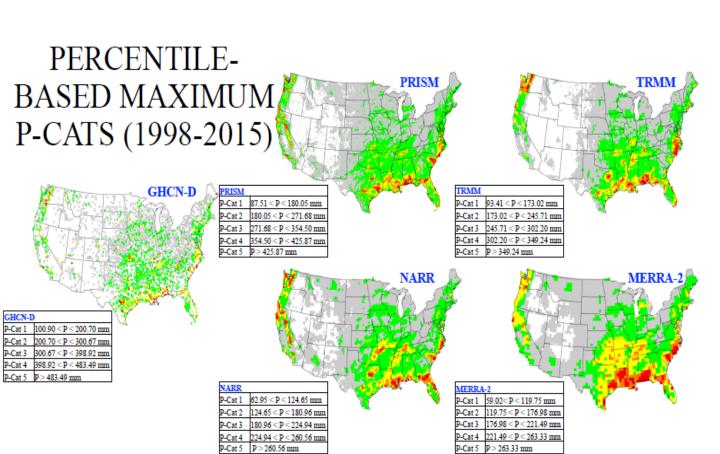
Precipitation Category	Percentile Threshold	CONUS Return Period
P-Cat 1	99.2850 - 99.9521	1/140
P-Cat 2	99.9521 - 99.9937	1/2,090
P-Cat 3	99.9937 - 99.9986	1/15,940
P-Cat 4	99.9986 - 99.9996	1/69,030
P-Cat 5	> 99.9996	1/250,140

percentile thresholds (>99th percentile)

P-Cat 1 93.41 < P < 173.02 mm


P-Cat 2 173.02 < P < 245.71 mm


P-Cat 3 245.71 < P < 302.20 mm


P-Cat 4 302.20 < P < 349.24 mm

P-Cat 5 P > 349.24 mm

newly defined P-Cat thresholds

CONCLUSIONS & FUTURE DIRECTION

Objective 1: Event-based Indicator of Change in Extreme Precipitation

 The most extreme precipitation events occur in the West due to landfalling atmospheric rivers and in the Southeast due to tropical systems

Objective 2: Dataset Intercomparison

- All datasets capture the principle patterns of P-Cat climatology
- Higher resolution datasets most closely resemble gauge data, even after regridding
- Variability persists across the five-dataset suite in the frequency, spatial extent, and magnitude of events

Preliminary Results: Percentile-based P-Cat Definitions

Some differences persist when extreme event definition is based on percentiles

Results of this analysis provide both a complete and intuitive way to interpret and visualize extreme precipitation climatology across the CONUS and a clear intercomparison between various precipitation estimation products.

Future Direction:

- Employ this indicator as a climate model evaluation target
- Investigate the meteorological mechanisms driving P-Cat events across the CONUS

THANK YOU! QUESTIONS?

Support for this work was provided by the NASA Indicators for the NCA Program

Contact: Emily Slinskey, slinskey@pdx.edu