

WORLD CLIMATE RESEARCH PROGRAMME

Extraordinary Session of the WCRP Joint Scientific Committee (JSC41B)

3. Lighthouse Science Plans

WCRP Lighthouse Activity on Explaining and Predicting Earth System Change

Overarching objective

 To design, and take major steps toward delivery of, an integrated capability for quantitative observation, explanation, early warning and prediction of Earth System Change on <u>global and</u> <u>regional scales</u>, with a focus on <u>multi-annual to</u> <u>decadal timescales</u>.

> Changes in ocean and atmosphere circulation are likely to be a specific focus of interest – key issue for adaptation.

Questions – to guide the discussions

1. Progress in developing Science Plan

Initial goals and objectives Include any new science / technologies / models / observations being envisaged How to ensure geographic and gender diversity in the science planning team?

2. Who are the critical partners?

Have they been contacted, and are they being engaged in the co-design?
NB this includes those external (e.g. Future Earth) and internal to WCRP (esp.

3. Early thoughts and recommendations

- Funding requirements?
- Other resource needs?

the Core Projects).

• Are there obvious funders to be approached?

4. Timeline and roadmap

• Draft timeline / roadmap for developing the science plan, and the launch of the LHA.

5. Other – anything else?

Guidance: answer each of these in following slides

Overview of Progress so far

- Assembled a team with broad expertise and good representation from Core Projects/Homes, but much to do on diversity and inclusion
- \succ In the process of identifying a co-chair
- Held two virtual meetings & set up a google doc to develop the science plan
- Identified 5 major areas of work & leads for 4 out 5 of these. Starting to flesh out the substance.
- Agreed important aspects of scope including areas of collaboration with other LHAs

We have identified 5 linked contributing activities:

- A. Monitoring and observing Earth System change
- B. Modelling change
- C. Integrated attribution, prediction and projection underpinned by process understanding
- D. Assessment of current and future hazards
- E. Early warning of high impact events including potential abrupt/regime changes

1. Progress in developing Science Plan

· Initial goals and objectives

- Include any new science / technologies / models / observations being envisaged
- How to ensure geographic and gender diversity in the science planning team?

WCRP Lighthouse Activity on Explaining and Predicting Earth System Change

Headline output: quantitative explanation of Earth System change

WMO OMM

World Meteorological Organization Organisation météorologique mondiale

EMBARGO 1400 CET (1300 GMT) WEDNESDAY 2 DECEMBER 2020

State of the Global Climate in 2020

WORLD METEOROLOGICAL ORGANIZATION

Commission for Basic Systems / Commission for Climatology

Global Annual to Decadal Climate Update

Target years: 2019 and 2019-2023 TRIAL PHASE

Executive Summary

This update presents a summary of annual to decadal predictions from <u>WMO designated Global</u> <u>Producing Centres and non-designated contributing centres</u> for the period 2019-2023. Latest predictions suggest that:

- Annual global temperature is likely to be at least 1°C warmer than preindustrial levels in each of the coming 5 years
- There is a small but growing chance (~10%) that one of the next 5 years will be at least 1.5 °C warmer than preindustrial levels

These headline reports currently include virtually no information on the attribution/explanation of multiannual to decadal changes in the Earth System

STATE OF THE CLIMATE IN 2019

Special Supplement to the Bulletin of the American Meteorological Society Vol. 101, No. 8, August 2020

Headline output: quantification of current and future weather and climate hazards

Simulated Tropical Cyclone Track density

- Where can specific hazards occur?
- How are hazard locations and other properties modulated by natural variability on interannual to decadal timescales, and how predictable are these modulations?
- How has climate change affected the distribution and other properties of specific hazards and what further changes are anticipated?

Collaboration with other LHAs

Collaboration with WCRP Homes

Topic B. Modelling Change

- What are the modelling requirements to have confidence in our ability to explain and predict changes in:
 - i. global earth system properties (e.g. energy and carbon budgets) collaboration with SLC LHA
 - ii. global and regional circulation of the ocean and atmosphere
 - iii. weather and climate hazards (e.g., hurricanes, floods, severe storms, droughts)?
- Primary focus on global models and large ensembles
- Collaboration with Digital Earths LHA

Topic C. Integrated attribution, prediction and projection underpinned by process understanding

- What is the scope?
- To provide a process-based understanding of recent multi-annual to decadal climate changes and quantify the roles of internal variability and external drivers including greenhouse gases, aerosols, solar, volcanoes, ozone, land-use...
- Include temperature, rainfall, atmosphere and ocean circulation, energy, carbon, sea level, sea ice, risks of extremes, biogeochemistry.
- Assess predictability and sources of skill.
- Where are the key knowledge and capability gaps?
- Almost no current capability for attributing multi-year changes.
- Studies have tended to focus on temperature, so other aspects need further assessment (especially hydroclimate and energy).
- Lack of observations (especially ocean).
- Predictability hampered by weak modelled signals.
- What research is required? What other activities are required? What are the new opportunities?
- How could we design a (quasi-operational) system for attribution of observed changes in the climate system on multiannual timescales?
- How do we take **underestimated modelled signals** into account?
- How can we use AI?
- How do we provide information at regional scales?

Topic D. Assessment of current and future risks

• What is the scope?

- Understand (explain), quantify and predict weather/climate hazards
- Focus on specific target phenomena (eg, TC, ETC, heat waves)
- Attribution in this LHA does not focus on individual high impact events but on understanding the natural and anthropogenic drivers of variability and change in <u>classes of weather/climate hazards</u>.
- Collaboration with LHA My Climate risk
- What research is required? What are the new opportunities?
 - New methodologies to quantify likelihood of hazards, e.g.:
 - UNSEEN approach to exploit hindcasts. Perhaps extend this into forecasts and projections?
 - Design and use of large ensembles in assimilation, attribution, prediction, and projections to enable better risk assessment.
 - Extended 'event' attribution methodology w/ coupled models that enable attribution and explanation of decadal time-scale 'events'?

2. Partners – external and internal to WCRP

- Internal:
 - All Homes
 - Other LHAs
- External:
 - Not yet discussed but some obvious e.g. GCOS, ESA CCI, ...
 - Mechanisms?

2. Who are the critical Partners?

- · Have they been contacted, and are they being engaged in the co-design?
- NB this includes those external (e.g. Future Earth) and internal to WCRP (esp. the Core Projects).

3. Resource requirements – early thoughts

- Not yet discussed
- Mechanisms? Need assistance from WCRP.

3. Early thoughts and recommendations

- Funding requirements?
- Other resource needs?
- Are there obvious funders to be approached?

4. Draft Timeline and Roadmap: Science Plans and LHA Launch

- 2021: Develop science plan
 Preparation and consultations
 Complete first draft: June
 Further consultations and revisions
 Final version: December
- **2022 -**
 - ➤ Launch
 - Implementation

4. Timeline and roadmap

 Draft timeline / roadmap for developing the science plan, and the launch of the LHA.

5. Other

5. Other – anything else?

