Irrigation Water Management using Weather and Extended Range Services

Adrija Roy, Parag Narvekar, Raghu Murtugudde and Subimal Ghosh Indian Institute of Technology Bombay Mumbai, India

Introduction

Irrigation Water Management with Weather Forecasts

Optimized Irrigation Water to be applied

Roy et al. (2019) Patent filed Roy et al. (2021), WRR

Photo (field) Credits: http://news.mit.edu/2017/design-cuts-costs-energy-drip-irrigation-0420 and https://researchmatters.in/news/better-soil-moisture-sensors-using-graphene-oxide

Study Area

Study Area

Analytical Solution of Soil Moisture Dynamics

Modelling Soil Moisture and Irrigation Amount:

The basic soil moisture balance equation
$$nZ_r \frac{ds_t}{dt} = R_t + I_t - ET(s_t) - LQ(s_t)$$

Mainly two source-sink components: rainfall and combined loss (ET, runoff and leakage)

Rate of rainfall is described as a probabilistic component (\mathbf{R}_t)

ET, runoff and leakage rate \rightarrow calculated as a function of present soil moisture amount and soil hydraulic properties

 $ET(s_t)$: the rate of evapotranspiration loss as a function of soil moisture at time t

 $LQ(s_t)$: the rate of loss due to runoff and leakage as a function of soil moisture at time t

 I_t : the irrigation rate, which is our main deliverable

Parameters of the Model:

s^{*} or Point of incipient stomatal closure, when plant transpiration is reduced.

Soil moisture at:-

Field capacity (s_{fc}) Wilting point (s_w) Hygroscopic point (s_{fc})

Soil porosity (n) Soil rooting depth (Z_r) Maximum Evapotranspiration rate (ET_{max})

Length of growing season (T_{seas})

Minimum probability with which the crop will not undergo water stress (α)

Water Conservation and Change in <u>RY</u> in Different Cases

0.75

Reliability Factor (α)

0.85

0.95

0.05

0

0.5

Extended Range

Water Savings and Maintaining RY

Site 1

Changes in RY (a, c, e and g) and savings in irrigation water use (b, d, f and h) w.r.t. the farmer's method of irrigation scheduling, using the proposed framework with extended range forecast for $(t+1)^{th}$ to $(t+7)^{th}$ day, $(t+8)^{th}$ to $(t+14)^{th}$ day and $(t+15)^{th}$ to $(t+21)^{th}$ day

Water Savings and Maintaining RY

Site 2

Changes in RY (a, c, e and g) and savings in irrigation water use (b, d, f and h) w.r.t. the farmer's method of irrigation scheduling, using the proposed framework with extended range forecast for $(t+1)^{th}$ to $(t+7)^{th}$ day, $(t+8)^{th}$ to $(t+14)^{th}$ day and $(t+15)^{th}$ to $(t+21)^{th}$ day

Next Step

Thank you Contact: <u>Subimal@civil.iitb.ac.in</u>