Irrigation Water Management using Weather and Extended Range Services

Adrija Roy, Parag Narvekar, Raghu Murtugudde and Subimal Ghosh
Indian Institute of Technology Bombay
Mumbai, India
Introduction
Irrigation Water Management with Weather Forecasts

Roy et al. (2019) Patent filed
Roy et al. (2021), WRR

Optimization Model
Objective: Minimize Water use
Decision Variable: Irrigation Water Application

Farm Scale Hydrologic Model

Constraint:
P(Root Zone Soil Moisture <= Water Stress Threshold)=\alpha (say 0.95)

1000 Rainfall Scenarios given Forecasts
Real-time Soil Moisture

Optimized Irrigation Water to be applied

Study Area
Analytical Solution of Soil Moisture Dynamics

Modelling Soil Moisture and Irrigation Amount:

The basic soil moisture balance equation

\[nZ_r \frac{ds_t}{dt} = R_t + I_t - ET(s_t) - LQ(s_t) \]

Mainly two source-sink components: rainfall and combined loss (ET, runoff and leakage).

Rate of rainfall is described as a probabilistic component \(R_t \).

ET, runoff and leakage rate → calculated as a function of present soil moisture amount and soil hydraulic properties.

\(ET(s_t) \): the rate of evapotranspiration loss as a function of soil moisture at time \(t \).

\(LQ(s_t) \): the rate of loss due to runoff and leakage as a function of soil moisture at time \(t \).

\(I_t \): the irrigation rate, which is our main deliverable.
Parameters of the Model:

s^* or Point of incipient stomatal closure, when plant transpiration is reduced.

Soil moisture at:
- Field capacity (s_{fc})
- Wilting point (s_w)
- Hygroscopic point (s_{fc})

Soil porosity (n)
Soil rooting depth (Z_r)
Maximum Evapotranspiration rate (ET_{max})
Length of growing season (T_{seas})
Minimum probability with which the crop will not undergo water stress (α)
Water Conservation and Change in R_Y in Different Cases
Extended Range

Decision Variable (Irrigation Water) Search Space

Search based Optimization

Limited Ensemble

Weather Generator: Hidden Markov Model

Large Ensemble Given Forecasts/ Predictions

Forecasts

Days

Farm-scale Ecohydrological Model with Monte Carlo Simulations

Forecasts

Days

Checking Probabilistic Constraints

Optimal Irrigation Water Management Plan for 3 Weeks
Changes in RY (a, c, e and g) and savings in irrigation water use (b, d, f and h) w.r.t. the farmer’s method of irrigation scheduling, using the proposed framework with extended range forecast for (t+1)th to (t+7)th day, (t+8)th to (t+14)th day and (t+15)th to (t+21)th day.
Changes in RY (a, c, e and g) and savings in irrigation water use (b, d, f and h) w.r.t. the farmer’s method of irrigation scheduling, using the proposed framework with extended range forecast for (t+1)th to (t+7)th day, (t+8)th to (t+14)th day and (t+15)th to (t+21)th day.
Next Step

Forecast/Prediction
Weather Scale (1 Day - 7 Days) | Extended Range (1 week - 3 weeks)

Farm Scale
Small Farm with Sensor Crop A
Small Farm with no Sensor Crop A
Small Farm with no Sensor Crop B
Local Scale Rainfall Using AI/ML
Optimization Model: Minimize Water Use No loss in yield (with certain Probability)
Farm Scale Eco-hydrological Model

Taluka Scale
Small Farm with Sensor Crop B
Small Farm with no Sensor Crop C
Sensor Data: Soil Moisture
Crowdsourced Data (qualitative)

District Scale
Crop Identification Using AI/ML
Soil Moisture from Satellites with coarse footprint

Taluka 1
Taluka 2
Taluka 3
Data (At Taluka Level)
1. Irrigation Water Requirements
2. Other Water Requirements
3. Agricultural Vulnerability (Socio-economic input)

Game-theoretic Approach, Optimization Model
Taluka wise Water Allocation

Merged Soil Moisture at Local Scale with AI/ML
Taluka Level Optimum Irrigation Water Requirement at Weather/Extended Range Scale
Optimum Water Use
Thank you
Contact: Subimal@civil.iitb.ac.in