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0 accelerate climate modeling and climate science

N the service of society, we need models that...

- Allow rapid iteration (e.g., run ensemble integrations,

study emergent physics in hierarchies of complexity etc.)

- Are more accurate than existing ones (e.qg., better

precipitation simulations, including extremes)

-+ Have quantified uncertainties (e.qg., to quantify tail risks)

To get there, we need to go beyond model (and data)
comparison to learning from data



We also need kilometer-scale models, but resolution alone will not break
through the primary uncertainties, e.g., from low clouds and microphysics

http://eoimages.gsfc.nasa.gov

Stratocumulus: colder Cumulus: warmer

They will remain globally unresolvable for decades to come

©



We can get generalizable, interpretable models with UQ by combining
the best of reductionist science with data science approaches

Deep learning’s success rests on overparameterization:

Leads to expressive models and data-hungry methods

Makes generalizability, interpretability, and UQ challenging

Reductionist science’s success rests on parametric sparsity:
Generalizable and interpretable (e.g., Newton’s Law of Universal Gravitation)

Reaches limits in complex systems such as the Earth system

Hybrid models combine both, traditional reductionist science
with Al where reductionism reaches its limits

J
@ Schneider, Jeevanjee, Socolow, Accelerating Progress in Climate Science, Physics Today 6/2021



E.g., to model turbulence, convection, and clouds, we use a unified
model, derived by conditional averaging of equations of motion

Coarse-graining fluids equations by conditionally averaging over coherent
plumes (=1, ..., N) and environment (/=0), leading to exact conservation laws:

Continuity:

d(pa;) = O(pajw;) _ T,
o + 5 +Vh - (pai{up))=  paiw; Zeij_(si

J

A\ 7
~~

Mass entrainment/detrainment

Scalar mean:
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Entrainment/detrainment
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Closure functions are excellent targets for (explainable!) ML
approaches; they can be stochastic and should include structural error

©



Key to learning from diverse data sources: Ireat learning problem as
inverse problem (rather than supervised learning) and learn from time-
averaged climate statistics

Spatial smoothness of statistics overcomes observation/
simulation resolution mismatch

- Climate-relevant statistics can include, e.g., emergent

constraints and precipitation extremes

- Most ML methods (e.g., neural networks, neural operators,

random feature models) embedded in host models (e.qg., for

entrainment) can be trained in this way (Kovachki & Stuart 2019;
Lopez-Gomez et al. 2022)



One example: continuous transition from BL turbulence, to shallow
convection, to deep convection in one unified parameterization
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cloud condensate[g/kg] precipitation [g/kg] vertical velocity [m/s]
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Replacing empirical entrainment/detrainment rates by shallow NN and
calibrating with LES library improves parameterization and generalizes well

Training (present climate LES) Validation (warm climate LES)
1.0 1.0 -
—— Empirical :
- Hybrid -
0.5 1 0.5 1
N N
) )
ui' 0.2 ur 0.2
Vp) wn
= =
0.1 ‘\ 0.11
0 5 10 15 0 5 10 15
Epoch Epoch

Training epoch (Kalman iteration with mini-batching)



Main Messages

Let’s move beyond MIPs and comparing with observations to learning
from diverse data, be they observations or computationally generated
data

Retain decades of hard-won domain knowledge: Augment process
models with Al approaches; do not, by default, replace them.

Learning from climate statistics (rather than, e.g., states or
tendencies) circumvents many issues that have limited
supervised learning approaches so far (e.g., unavailability of
sufficient labeled data)

- Algorithms for solving these learning and UQ tasks (borrowing on

ensemble Kalman methods from NWP) are now available (Cleary et al 2021;

Dunbar et al. 2021; Howland et al. 2022; Lopez-Gomez et al., in prep.; see Clima.caltech.edu/publications)



