$\frac{D\tilde{u}}{Dt} = -\nabla \tilde{p} + \tilde{\rho}g + \tau$

$\tau = F(\tilde{u}, \tilde{p}, \tilde{\rho}, \ldots, \alpha, \beta, \gamma)$

Al-Aided Hybrid Modeling

Tapio Schneider and the CliMA Team (clima.caltech.edu)
To accelerate climate modeling and climate science in the service of society, we need models that...

- Allow rapid iteration (e.g., run ensemble integrations, study emergent physics in hierarchies of complexity etc.)
- Are more accurate than existing ones (e.g., better precipitation simulations, including extremes)
- Have quantified uncertainties (e.g., to quantify tail risks)

To get there, we need to go beyond model (and data) comparison to learning from data
We also need kilometer-scale models, but resolution alone will not break through the primary uncertainties, e.g., from low clouds and microphysics. Stratocumulus: colder
Cumulus: warmer

They will remain globally unresolvable for decades to come

Schneider et al., *Nature Climate Change* 2017
We can get generalizable, interpretable models with UQ by combining the best of reductionist science with data science approaches.

- **Deep learning**’s success rests on *overparameterization*:
 - Leads to expressive models and data-hungry methods
 - Makes generalizability, interpretability, and UQ challenging

- **Reductionist science**’s success rests on *parametric sparsity*:
 - Generalizable and interpretable (e.g., Newton’s Law of Universal Gravitation)
 - Reaches limits in complex systems such as the Earth system

Hybrid models combine both, traditional reductionist science with AI where reductionism reaches its limits.
E.g., to model turbulence, convection, and clouds, we use a unified model, derived by conditional averaging of equations of motion

Coarse-graining fluids equations by conditionally averaging over coherent plumes ($i=1, \ldots, N$) and environment ($l=0$), leading to exact conservation laws:

- **Continuity:**
 \[
 \frac{\partial (\rho a_i)}{\partial t} + \frac{\partial (\rho a_i \bar{w}_i)}{\partial z} + \nabla_h \cdot (\rho a_i \langle u_h \rangle) = \rho a_i \bar{w}_i \left(\sum_j \epsilon_{ij} - \delta_i \right)
 \]
 Mass entrainment/detrainment

- **Scalar mean:**
 \[
 \frac{\partial (\rho a_i \bar{\phi}_i)}{\partial t} + \frac{\partial (\rho a_i \bar{w}_i \bar{\phi}_i)}{\partial z} + \nabla_h \cdot (\rho a_i \langle u_h \rangle \bar{\phi}_i) = - \frac{\partial (\rho a_i \bar{w}_i \bar{\phi}_i)}{\partial z} + \rho a_i \bar{w}_i \left(\sum_j \epsilon_{ij} \bar{\phi}_j - \delta_i \bar{\phi}_i \right) + \rho a_i \bar{s}_{\phi,i}
 \]
 Turbulent transport
 Entrainment/detrainment
 Sources/sinks

Building on work by Siebesma, Teixeira et al. (ECMWF); Tan et al., JAMES 2018, Cohen et al. JAMES 2020, Lopez-Gomez et al. JAMES 2020
E.g., to model turbulence, convection, and clouds, we use a unified model, derived by conditional averaging of equations of motion.

Coarse-graining fluids equations by conditionally averaging over coherent plumes ($i=1, \ldots, N$) and environment ($l=0$), leading to exact conservation laws:

- **Continuity:**
 \[
 \frac{\partial (\rho a_i)}{\partial t} + \frac{\partial (\rho a_i \overline{w_i})}{\partial z} + \nabla_h \cdot \left(\rho a_i \overline{u_h} \right) = \rho a_i \overline{w_i} \left(\sum_j \epsilon_{ij} - \delta_i \right)\]

- **Scalar mean:**
 \[
 \frac{\partial (\rho a_i \overline{\phi_i})}{\partial t} + \frac{\partial (\rho a_i \overline{w_i \phi_i})}{\partial z} + \nabla_h \cdot \left(\rho a_i \overline{u_h \phi_i} \right) = - \frac{\partial (\rho a_i \overline{w_i \phi_i})}{\partial z} + \rho a_i \overline{w_i} \left(\sum_j \epsilon_{ij} \overline{\phi_j} - \delta_i \overline{\phi_i} \right) + \rho a_i \overline{S_{\phi,i}}\]

Closure functions are excellent targets for (explainable!) ML approaches; they can be stochastic and should include structural error.

Building on work by Siebesma, Teixeira et al. (ECMWF); Tan et al., JAMES 2018, Cohen et al. JAMES 2020, Lopez-Gomez et al. JAMES 2020
Key to learning from diverse data sources: Treat learning problem as inverse problem (rather than supervised learning) and learn from time-averaged climate statistics

- Spatial smoothness of statistics **overcomes observation/simulation resolution mismatch**

- **Climate-relevant statistics** can include, e.g., emergent constraints and precipitation extremes

- Most **ML methods** (e.g., neural networks, neural operators, random feature models) embedded in host models (e.g., for entrainment) **can be trained in this way** (Kovachki & Stuart 2019; Lopez-Gomez et al. 2022)
One example: continuous transition from BL turbulence, to shallow convection, to deep convection in one unified parameterization

(Anna Jaruga, in prep.)
One example: continuous transition from BL turbulence, to shallow convection, to deep convection in one unified parameterization

(Anna Jaruga, in prep.)
Replacing empirical entrainment/detrainment rates by shallow NN and calibrating with LES library improves parameterization and generalizes well (Ignacio Lopez Gomez, in prep.)
Main Messages

- Let’s move beyond MIPs and comparing with observations to learning from diverse data, be they observations or computationally generated data.

- Retain decades of hard-won domain knowledge: Augment process models with AI approaches; do not, by default, replace them.

- Learning from climate statistics (rather than, e.g., states or tendencies) circumvents many issues that have limited supervised learning approaches so far (e.g., unavailability of sufficient labeled data).

- Algorithms for solving these learning and UQ tasks (borrowing on ensemble Kalman methods from NWP) are now available (Cleary et al. 2021; Dunbar et al. 2021; Howland et al. 2022; Lopez-Gomez et al., in prep.; see clima.caltech.edu/publications)