Processes missing from models

Antarctic ice sheet uncertainty

2050

1.0

1.5

2075

2100

2125

2150 2175

0.5

2200 2225 2250 2275

Lowry et al., 2021.

2.0

RCP2.6

RCP8.5

 interaction with ocean • response to atmos. forcing

Probability distribution function

2300

0.0

10

Projected global mean sea level rise under different SSP scenarios

PA4231 MENVIEL ET AL.: CLIMATE RESPONSE TO ANTARCTIC MELTWATER

Ice sheet - ocean interactions

Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge

https://doi.org/10.1038/s41586-019-0889-9

Pepijn Bakker¹[†], Peter U. Clark¹, Nicholas R. Golledge^{2,3}, Andreas Schmittner¹ & Michael E. Weber^{4,5}

ARTICLE

Global environmental consequences of twenty-first-century ice-sheet melt

Nicholas R. Golledge^{1,2}, Elizabeth D. Keller², Natalya Gomez³, Kaitlin A. Naughten⁴, Jorge Bernales⁵, Luke D. Trusel⁶ & Tamsin L. Edwards

Figure 6. Schematic representation of the positive feedback involved in subsurface temperature increase and ice sheet melting.

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Temperature anomaly (K)

de Lavergne_let al., 2014.

2300

а

Initial

fluxes

0.7

0.6

Golledge et al., 2019.

ARTICLE

doi:10.1038/nature17145

Contribution of Antarctica to past and future sea-level rise

Robert M. DeConto¹ & David Pollard²

Atmosphere - ice sheet interactions

"Summer air temperatures in the RCM ... remain below freezing ... with *little to no surface melt*. As a result, substantial oceanic warming ... is required to initiate WAIS retreat"

"Antarctic contributions to ... LIG sea level are in much better agreement with geological estimates than previous versions of our model, which *lacked these new treatments of meltwater-enhanced calving and ice-margin dynamics*, suggesting that the new model is better suited to simulations of future ice response"

Ice shelf hydrofracture & cliff collapse

Day 10

Bassis et al., 2021

Day 70

Day 23

Model coupling, physics & resolution:

Atmos. forcing / MICI:

RESEARCH | REPORTS

ICE SHEETS

Transition to marine ice cliff instability controlled by ice thickness gradients and velocity

J. N. Bassis^{1*}, B. Berg^{1,2}, A. J. Crawford³, D. I. Benn³

ARTICLE

- 8km

4km

10km/y

1km/yr

100m/y

10m/y 1m/y

https://doi.org/10.1038/s41586-019-0901-4

DOI: 10.1038/ncomms9798

OPEN

Revisiting Antarctic ice loss due to marine ice-cliff instability

Tamsin L. Edwards¹*, Mark A. Brandon², Gael Durand³, Neil R. Edwards², Nicholas R. Golledge^{4,5}, Philip B. Holden², Isabel J. Nias⁶, Antony J. Payne⁷, Catherine Ritz³ & Andreas Werneck

Rotational / gravitational feedback:

ARTICLE

Received 2 Jun 2015 | Accepted 6 Oct 2015 | Published 10 Nov 2015

Sea-level feedback lowers projections of future Antarctic Ice-Sheet mass loss

Natalya Gomez^{1,2}, David Pollard³ & David Holland¹

Future outlook

Ice-ocean feedback:

ARTICLE

https://doi.org/10.1038/s41586-018-0712-z

Change in future climate due to Antarctic meltwater

3en Bronselaer^{1,2,3}*, Michael Winton², Stephen M. Griffies^{2,3}, William J. Hurlin², Keith B. Rodgers³, Olga V. Sergienko^{2,3} Ronald J. Stouffer^{1,2} & Joellen L. Russell

Muntjewerf et al., 2021

