Ultra-High Resolution Modeling

L. Ruby Leung Pacific Northwest National Laboratory

Key messages

- Ultra-high resolution (UHR) modeling is a useful tool to add to our earth system modeling toolbox, but many tools are needed to address different facets of climate science and provide actionable climate information
- Without much tuning, UHR models are more skillful than their lower resolution counterparts, but more efforts are still needed to address model biases
- More research is needed to explore new uses and demonstrate the usefulness of UHR models
 - Storyline development; understanding mechanisms for extreme events and their future changes; constraining cloud feedback; understanding mesoscale air-sea interactions and role in energy/water cycle; training data for AI/ML parameterizations; etc.

Challenges in Earth system modeling require many tools

Modeling **subgrid processes of convection**, **clouds, and aerosols** represents a major source of uncertainty in projections of climate and water cycle changes

Modeling carbon and nutrient cycles and human influence is a major source of uncertainty in projecting 21st century warming

(Friedlingstein et al. 2014 JCLIM)

Modeling ice shelf and ice sheet instability is a major source of uncertainty in projecting sea level rise

Recent Sea Level Rise Fastest for Over 2,000 Years

(Climate Science Special Report 2016)

Internal variability represents a major source of uncertainty in regional projections

(Dong et al. 2021 NCOMM)

Ultra-high resolution modeling for projecting changes in extreme weather events

(Chen et al. in review)

E3SM: Modeling across scales on DOE computers

Model component	Low resolution (LR)	High resolution (HR)	Storm-resolving resolution	Regional refined meshes (RRM)
Atmosphere & Land	100 km	25 km	3 km	variable
Atmosphere & Land Ocean & Ice Ocean & Ice	30-60 km	6-18 km	6-18 km	variable
River	50 km	12 km	12 km	variable

Global cloud resolving modeling

- SCREAM (Simple Cloud Resolving E3SM Atmosphere Model) uses a NH dycore and targets ~3 km grid spacing run globally or using regional refined meshes
- SCREAM v0 (F90 version) has been used to participate in **DYAMOND2**
- C++ dycore achieves 1.38 SYPD on Summit best performance we know of for a global cloud resolving dycore + tracers at 3 km resolution
- GPU-enabled version (C++ and Kokkos library) will be operational in 2022 for exascale computing (E3SM Atmosphere Model - EAMXX)

Bertagna, et. al., 2020: A performance-portable nonhydrostatic atmospheric dycore for the Energy Exascale Earth System Model running at cloud-resolving resolutions. SC '20: *Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis*, Nov. 2020.

Caldwell et al., 2021: Convection-Permitting Simulations with the E3SM Global Atmosphere Model, *J. Adv. Model. Earth Syst.*, 13, e2021MS002544. https://doi.org/10.1029/2021MS002544.

Global cloud resolving modeling - DYAMOND2 run

- F90 version achieved 4-5 simulated days per wall clock day on Cori-KNL
- Great skill with no tuning

(Caldwell et al. 2021 JAMES)

Global cloud resolving modeling – realistic simulation of convective storms

MCS (mesoscale convective system): bright white shading; Precipitation: color shading; CWV: faint white shading

SCREAM simulation at ~3 km grid spacing

Observations

(Feng, Leung, Caldwell, Terai, in prep)

Much better simulation of MCS in SCREAM (~3 km) than HR E3SM (~25 km)

- Many observed MCS characteristics and relationships with large-scale environments are reasonably reproduced
- Model produces frequent and strong deep convective systems in tropical ocean, but they are not sufficiently organized into MCS
- MCS rainfall amount and fraction to total rainfall is underestimated, bias is compensated by unorganized deep convection

DYAMOND1 simulations: biases in local-scale precipitation characteristics

An ensemble of 5 models in DYAMOND1 with resolution between 3 - 5 km

• Overly active convection and frequent drizzling remain an issue, with implications for cloud forcing and interhemispheric asymmetry of energy input

(Zhou, Leung, Lu, in prep)

Cloud resolving modeling for storyline development

June 2012 derecho in West Virginia: Power transmission infrastructure damages exceeded \$170 million

Regional refined meshes for derecho simulations: 7km, 3.5km, 1.75km

(Source: Paul Ullrich and Weiran Liu)

How may this event unfold in the future with warming?

Key messages

- Ultra-high resolution (UHR) modeling is a useful tool to add to our earth system modeling toolbox, but many tools are needed to address different facets of climate science and provide actionable climate information
- Without much tuning, UHR models are more skillful than their lower resolution counterparts, but more efforts are still needed to address model biases
- More research is needed to explore new uses and demonstrate the usefulness of UHR models
 - Storyline development; understanding mechanisms for extreme events and their future changes; constraining cloud feedback; understanding mesoscale air-sea interactions and role in energy/water cycle; training data for AI/ML parameterizations; etc.