

New Observations & Use Of Models For Designing And Prioritizing (Satellite) Observing Systems

Moderators

Duane Waliser (JPL) & Carla Cardinali (ECMWF)

PAN-WCRP MODELLING MEETING

MET OFFICE, EXETER, OCT 9[™]-13[™], 2017

DISCUSSION TOPICS

- How to best prepare and benefit from new observations coming available in the next 5 years?
 e.g. golden ages for hydrology and C&E.
- How to identify, prioritize and design future observing systems to meet needs of the modeling community and address critical/complex science questions?
 - The era of Earth Science "discovery" missions (put it up and it will be useful) is over.
 - The totality of new science and continuity missions requires an international fleet of complementary and synergistic contributions.
 - Multiple countries/agencies are contributing new observations & international partnerships are becoming more common.
 - Options for smaller, more economical satellites/sensors are becoming feasible:
 - Constellations of satellites/sensors (e.g. A-Train, CYGNSS)
 - Multiple observation types for complex processes
 - Tight formation flying for rapid changes (e.g. Δt = minutes)
 - Modeling/OSSE tools are sorely needed across weather, climate and other Earth Science areas, and across a range of complexity (e.g. simple sampling, hypothesis testing, forecast/projection OSSEs) to identify, prioritize & design new observing systems.
 - The space agencies alone don't own/manage all the modeling expertise and resources to optimally address next generation needs.

New Observations (< 2022) Relevant to Model Development and Evaluation

(non-exhaustive list)

Major programs include ESA

- Living Planet Program/Explorer
- Copernicus/SentineL

NASA

- Decadal Survey
- Earth Venture (Mission, Instrument)
 ISRO, CNES, JAXA, DLR, CNSA, etc
 Operational EUMETSAT, NOAA, IMD,
 JMA, CMA

5 Year Horizon - Mostly Relevant to Weather/Climate Model Support						
KARI	JAXA	ISRO/NASA	CNES/NASA	GFZ/NASA	ESA	NASA
GEMS - O3, NO2, aerosol	GCOM-C - multi- spectral VisIR	NISAR - biomass and ice sheets	SWOT - mesoscale ocean topography & lake/river heights	GRACE-FO - gravity, ice-sheet, groundwater, ocean mass storage	EarthCARE - cloud radar w/ doppler	SWOT - mesoscale ocean topography & lake/river heights
ABI - IR Sounder (e.g. GOES-R, MTG)	EarthCARE - cloud radar w/ doppler				ADM-Aeolus - Winds	GRACE-FO - gravity, ice-sheet, groundwater, ocean mass/heat storage
	GOSAT-2 - CO2, CO, CH4				Biomass - biomass	NISAR - biomass and ice sheets
					Sentinel 4 - 03, NO2, aerosol	lceSat-2 - glaciers, ice- sheet
					Sentinel 5 - O3, NO2, aerosol	OCO-3 - CO2, SIF
	Composition				Sentinel 6 - Sea Level	ECOSTRESS - evapotranspiration
	Carbon & Ecosystems		Geostationary			GEDI - forest/vegetation structure
	Water w/ SMAP, SMOS, ECOSTRESS			33		TEMPO - O3, NO2, aerosol
	Atmosphere Physics w/GOES-R & MTG		ISS			MAIA - aersol type & size
						GeoCARB - CO2, CO, CH4

Interplay between Observations and Models for Science, Applications and Mission Formulation

Technology Trade Space & Earth Science Complexity to be Considered is Growing / Significant

(yet \$ constrained)

Atmosphere Ocean Land Cryosphere Biosphere

Continuity vs New Science

Sparse, Uncoordinated LEO satellites

Coordinated observatories with high spatial and temporal sampling Requires International/Industry partnerships and leadership

Constellations

MODELING TOOLS & RESOURCES NEEDED

Jet Propulsion Laboratory
California Institute of Technology

- Accessible Earth System component and coupled models are needed or trade space considerations in identifying, prioritizing and designing new observing systems:
 - Forward satellite sensor operators embedded or software/collaborative means to readily embed new, experimental satellite sensor concepts.
 and/or
 - Realistic, high-resolution "truth" simulations from which forward satellite sensor operator calculations can be computed from model output.
 - Some constellations / processes require output with sampling of minutes
 - Some continuity mission / climate mission considerations require output of decades.
 - Model uncertainty needs to be accounted for, thus multiple models or physical ensembles of a given model are needed.
- As new observations are being used to develop and evaluate models, and their advocacy often driven by reducing forecast/projection uncertainties (no longer "discovery"), a stronger partnership in this endeavor is needed.