

Evaluating aerosols impacts on Numerical Weather Prediction: Summary

Ariane Frassoni Ariane.frassoni@inpe.br

With inputs from: Saulo Freitas (project lead), Julliana Larise, Maurício Zarzur, Arlindo Silva, Angela Benedetti, Georg Grell, Oriol Jorba, Morad Mokhtari, and WGNE Members Participants

> Pan-WCRP Modelling Groups Meeting Exeter - Oct 2017

Goals of the Exercise

- This project aimed to improve our understanding about the following questions:
- How important are aerosols for predicting the physical system (NWP, seasonal, climate) as distinct from predicting the aerosols themselves?
- How important is atmospheric model quality for air quality forecasting?
- What are the current capabilities of NWP models to simulate aerosol impacts on weather prediction?

Participating Models

Institution Model	Domain Resolution	Aerosol Species	A & BB Emissions	Aerosol Physics	Cloud Physics	Aerosol Assim.
CPTEC BRAMS	Regional 10 km	BC, Sea-Salt, OC, SO4	EDGAR 4. 3BEM	bulk	2-mom	no
JMA MASINGAR	Global TL319L40	Dust, Sea-Salt, BC, OC, SO4	MACCity GFAS 1.0	2-mom	2-mom	no
ECMWF Global	Global T511L60			Bulk	Bulk	yes
Météo-France ALADIN + ORILAM	Regional 7.5 km	Dust	DEAD model	3-mom log- no normal	Bulk	no
ESRL/NOAA WRF-Chem	Regional cloud res.	(many)	EDGAR 4. 3BEM	Bulk and Modal	2-mom	no
NASA/GSFC GEOS-5+GOCART	Global 25 km	Dust, Sea-Salt, BC, OC, SO4	EDGAR 4.1 QFED 2.4	Bulk	Bulk or 2-mom	yes
NCEP NGAC+GOCART	Global T126	Dust, Sea-Salt, BC, OC, SO4	Climatological Aerosols	Bulk	Bulk	no
Barcelona SC	regional	dust	BSC-dust model	8 dust size bins	Same as in WRF	no

Protocol: Experiments

Experiment	Direct Effect	Indirect Effect	No aerosol Interaction
1	Х		
2		Х	
3	Х	Х	
4			Х

Case Studies

1) Dust over Egypt: 4/2012 2) Pollution in China: 1/2013 3) Smoke in Brazil: 9/2012

Case 1: Dust Plume over Egypt

Decrease in Radiative shortwave flux at surface and air temperature at 2m with Aerosol

Large discrepancies among centers

-3 -2.5-2.25 -2 -1.75-1.25 -1 -0.75-0.25 0 0.25 0.5

K

Case 3: Persistent Smoke in South America

Low effect with climatological aerosol

Decrease in Radiative shortwave flux at surface and air temperature at 2m

Large discrepancies among centers

-0.5

0

0.5

-3

-2.5

-2

General overview of impacts on the prediction skill – case 3

Variable	ECMWF		JMA		NASA		NCEP		NOAA		СРТЕС	
Skill score	RMSE	BIAS	RMSE	BIAS	RMSE	BIAS	RMSE	BIAS	RMSE	BIAS	RMSE	BIAS
2-m temp	1	1	✓	1	1	1	1	✓	1	1	1	1
10-m wind speed	X	X	×	X	1	1	X	X	1	1	1	1
10-m wind direction	1	~	X	✓	X	✓	X	X	X	1	1	✓
rainfall	~	1			×	X	×	X	1	X	1	~

DOMAIN of EVALUATION

ECMWF

CPTEC operational NWP

CPTEC operational NWP

Questions

How important are aerosols for predicting the physical system?

Direct effect is important - improvements on NWP skill considering Aerosols

How important is atmospheric model quality for air quality forecasting? Important (Ex: JMA and ECMWF lower erros) more investigation is needed

What are the current capabilities of NWP models to simulate aerosol impacts on weather prediction? To be discussed

Projetc webpage: http://meioambiente.cptec.inpe.br/wgne-aerosols/

Thanks for your attention!