World Climate Research Programme	WGSIP's Long-Range Forecast Transient Intercomparison	THE HEAD AND AND AND AND AND AND AND AND AND A
Environment and Climate Change Canada Environnement et	Project (LRFTIP)	HYDROMETEOROLOGICAL CENTRE OF RUSSIA
Changement climatique Canada	William Merryfield ¹ , Mikhail Tolstykh ^{2,3} , Francisco Doblas-Reyes ⁴ , Tamaki Yasuda ⁵ , and Woo-Sung Lee ¹ ¹ Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada	⑥ 気象庁
Barcelona Supercomputing Center Centro Nacional de Supercomputación	² Institute of Numerical Mathematics, Russian Academy of Sciences ³ Hydrometcentre of Russia ⁴ Barcelona Supercomputing Center ⁵ Meteorological Research Institute/Japan Meteorological Agency	Japan Meteorological Agency

Introduction

LRFTIP is an initiative of WCRP's Working Group on Subseasonal to Interdecadal Prediction (WGSIP). Its purpose is to enable multi-model intercomparison studies of the transient behavior of coupled long-range forecast models evolving from observation-based initial conditions. (WMO defines long-range forecasting as from 30 days up to years.)

LRFTIP Objectives

- 1) Developing a multi-model online archive of hindcast climatologies and related diagnostics including systems contributing to S2S, CHFP, DCPP
- 2) Developing standard set of diagnostics characterizing forecast shock/drift
- 3) Addressing science questions, including
 - influence of different initialization methods on transient behavior of climate model components

Data Archive

Time scales represented for different forecast types

- Subseasonal: daily to 30/60 days

 \rightarrow

- daily to 30/60 days + monthly through forecast range - Seasonal:
- daily to 30/60 days + monthly/annual through forecast range - Decadal:

Data format

- CF-compliant **NetCDF4**
- Time variable=**leadtime** - File names, directory tree guided by

Data location: ftp://dapp2p.cccma.ec.gc.ca/pub/goapp/LRFTIP/

- Can be accessed from https://www.wcrp-climate.org/wgsip-projects/lrftip
- identification of any impacts (likely negative) on climate forecast quality
- 4) Of particular interest: **hindcast initialization experiments** (same model, different initialization methods) that contribute to (1)-(2) and inform (3)

Approach

- For a particular model and start date, hindcasts are averaged over available years and ensemble members to form a *hindcast climatology*
- When available, climatologies for the same model are also constructed for
 - > Freely running model (ideally CMIP historical simulations, averaging) over multiple ensemble members)
 - \succ Hindcast initial conditions represented by assimilating model run, analysis used for initialization, or other observation-based reference
- These represent "endpoints" of hindcast drifts, characterizing evolution of hindcast climatology away from initial conditions, toward model's own climate:

initial condition climatology (analysis)

model climatology (historical simulation)

- Community input is welcome (and indeed sought), including
 - Suggestions for shock/drift diagnostics
 - > Data contributions for models and/or initialization methods not in archive

(web search "LRFTIP"), includes data specification document

Current Status

CMIP/ESGF

conventions

Models: The LRFTIP archive currently includes 6 subseasonal forecast models (S2S), 19 seasonal forecast models (CHFP, ENSEMBLES), and

15 decadal models (CMIP5, ENSEMBLES)

Tables show **numbers of variables** for each model, climate system component, and averaging interval, for analysis (observation based), forecasts, and historical simulations as available

Seasonal Model		Atmosphere Daily			mosph Nonthl		Ocear /Ionthl	I	Land Month		ly C	
CanCM3	18	22		22	22	12	12		4	1	2	cc
CanCM4	18	22		22	22	12	12		4	1	2	MF
ECMWF-S4				18	20				1			CF
JMAMRI-CGCM1	12	16		20	20	6	7					Car
JMAMRI-CGCM2				19	21	6	6					CN
MIROC5_v1.0	12	18		16	18	6	7					EC
MPI-ESM-LR				20	22							GF
POAMA p24a/b/c				12	14							Had
ARPEGE				7	7							IFM
CFS_SHFP	3	3		8	8							MIF
СМАМ	3	5		7	7							MR
GloSea4		1		7	7							UKI
GloSea5		1		7	7							UKI
ENSEMBLES (CMCC- INGV, ECMWF-S3, IFM-												EC
GEOMAR, MF, <u>DePreSys</u> , HadGEM2	16	20		20	20				1			BC

Subseasonal ModelAtmosphere DailyOcean DailyECCC-S2S771	Analysis / Reference	F	ore	cas	ts			listorica Simulatio	
ECCC-S2S 7 7 1 1	Subseasonal Model	Atı					ı		
	ECCC-S2S	7	7		1	1			
ECMWF-S2S 7 7 1 1	ECMWF-S2S	7	7		1	1			
JMA-S2S 2 1 1	JMA-S2S	2	2		1	1			
Météo-France-S2S 7 7 1 1	Météo-France-S2S	7	7		1	1			
NCEP-S2S 7 7 1 1	NCEP-S2S	7	7		1	1			
UKMO-S2S 4 4 1 1	UKMO-S2S	4	4		1	1			

* Multiple initialization methods

																1					
Decadal Model		Atmosphere Daily		Atmosphere Monthly			Atmosphere Yearly			Ocean Monthly			Ocean Yearly			Land Month/yearly			Sealce Month/Yearly		
CCSM4 (i1,i2) *					24	24		24	24		8	9		8	9		3	3		2	2
MF-ENSEMBLES					20			20			11			11			1				
CFSv2(i1,i2) *					26			26			7			7			1			2	
CanCM4 (i1,i2) *	25	16	6	25	26	17	25	26	17	13	13	13	13	13	13	4	3	2	2	2	
CNRM-CM5		6	6		26	26		26	26		10	10		10	10		3	3		2	
ECMWF-ENSEMBLES					20			20			11			11			1				-
GFDL-CM2p1					18	18		18	18		11	11		11	11		2	2		2	1
HadCM3		9	9		25	25		25	25		6	6		6	6		3	3		2	2
IFM-ENSEMBLES					20			20			11			11			1				
MIROC5		20	20		26	26		26	26		7			7			3	3		2	2
MRI-CGCM3		6			26			26			10			10			3			2	
UKMO-DePreSys-ENS					20			20									1				
UKMO-HadGEM2-ENS					20			20									1				
EC-EARTH					19	17		19	17		7	3		7	3					2	2
BCC-CSM1.1		6	6		26	26		26	26		7	7		7	7					2	2

Sample diagnostics

and La Niña-like transients

(b) As in (a), except for a single model CanCM4 using two different ocean initialization methods: i1, including subsurface data, and i2, with surface initialization only (c) As in (b), except *differences* (i1–i2) in SST (right) and 20°C isotherm depth (left), showing La Niña-like transient excited by anomalous upwelling Kelvin waves

Project contact for enquiries, interest to contribute, etc: ec.pitple-Irftip.ec@canada.ca