

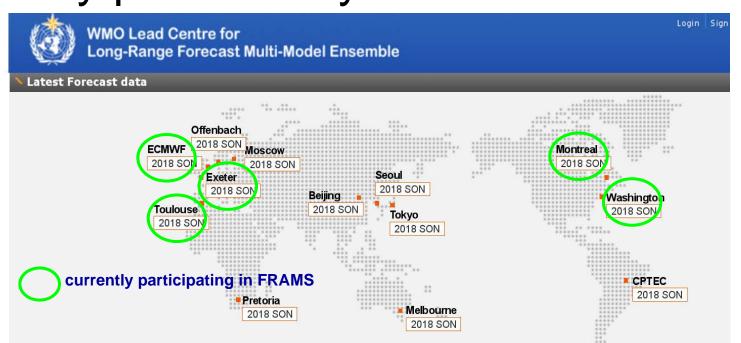
Toward user-relevant monthly to seasonal forecasts of **Arctic sea ice: The FRAMS project**

Bill Merryfield^{1,2}, Bruno Tremblay³, Bertrand Denis^{4,5}, Chris Bone², Adrienne Tivy⁶

McGill University of Victoria

¹Canadian Centre for Climate Modelling and Analysis, ECCC ²University of Victoria ³McGill University ⁵Université du Québec à Montréal ⁶Canadian Ice Service, ECCC ⁴ Meteorological Service of Canada, ECCC

About FRAMS


<u>Forecasting Regional Arctic Sea Ice from a Month to Seasons</u> (FRAMS) is a three-year project funded by Canada's Marine Environmental Observation Prediction and Response (MEOPAR) network. It is endorsed by the Year of Polar Prediction (YOPP).

Objectives

- 1) Advancing the science of multi-model sea ice forecasting on time scales of a month to seasons
- 2) Developing Arctic sea ice forecast products and services for the new WMO Arctic Polar Regional Climate Centre (ArcRCC)
- 3) Identifying physical processes and aspects of initial states that

WMO seasonal forecasting and the ArcRCC

- WMO seasonal forecasts currently provided by 13 Global Producing Centres (GPCs) WMO Lead Centre for Long-Range Forecast Multi-Model Ensemble
- Of the GPCs whose models have interactive sea ice, 5 are currently participating in FRAMS \longrightarrow

The ArcRCC has 3 nodes, in Norway, Russia and Canada. The Canadian node in Montreal is tasked with providing forecast information, including for sea ice.

FRAMS analysis component

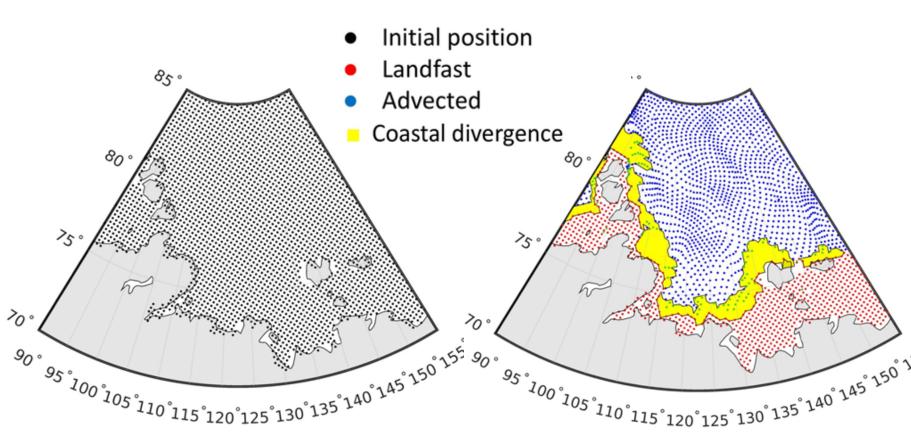
enable sea ice to be skillfully predicted

4) Co-developing, with the Canadian Ice Service and end users in the Arctic marine transportation sector, sea ice forecast products that are useful for decision making

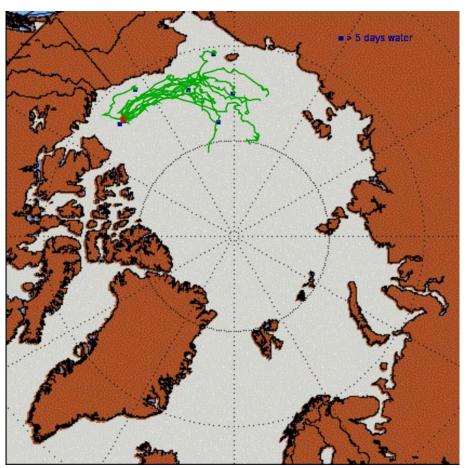
FRAMS forecasting component

The forecasting component of FRAMS is assembling data from the following models to support **research and development of** products and services:

label	name	centre	sea ice component, properties, rheology	max resolution / forecast range
M1	CanCM3/4	ECCC/MSC	concentration/thickness, cavitating fluid	≈200 km / 12mon
M2	GEM-NEMO	ECCC/MSC	CICE, 5 ice categories, EVP	≈ 40 km / 12mon
M3	CFSv2	NOAA (US)	GFDL SIS, 5 ice categories, EVP	≈ 40 km / 9 mon
M4	System 5	Météo France	GELATO, 4 ice categories, EVP	\approx 40 km / 7 mon
M5	GloSea5	Met Office (UK)	CICE, 5 ice categories, EVP	≈ 10 km / 5 mon
M6	SEAS5	ECMWF	CICE, 5 ice categories, EVP	≈ 10 km / 7 mon
M7	En-GIOPS	ECCC/MSC	CICE, 10 ice categories, EVP	≈ 10 km / 1 mon

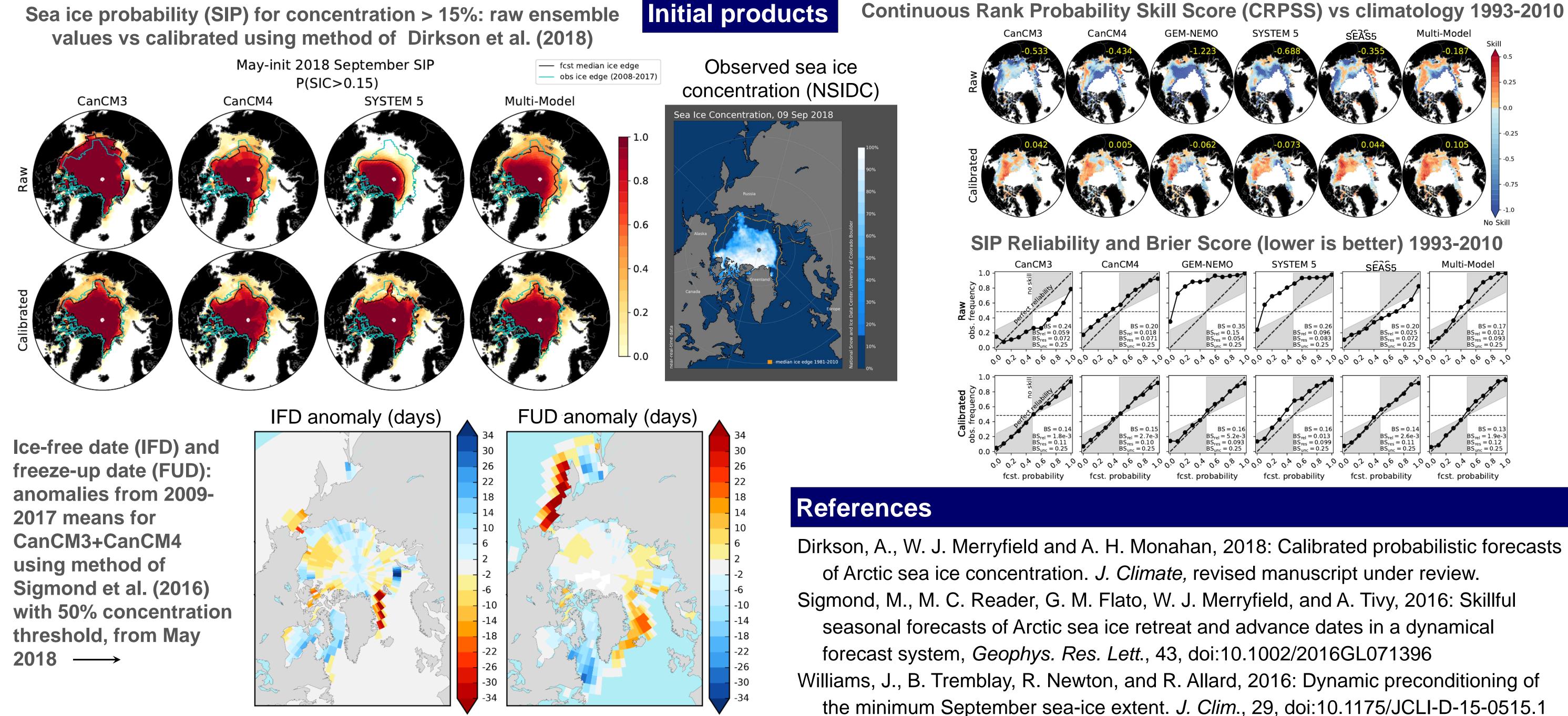

• These models differ in their spatial detail:

Questions asked:


- What are the sources of skill in sea ice forecasts?
- How are models deficient in representing these key processes?
- How do current model forecasts compare to empirical predictions?

Key tool: Lagrangian Sea Ice Tracking System (LITS)

Follows sea ice trajectories based on Polar Pathfinder ice motions \longrightarrow (Williams et al. 2016)



12-month sea ice trajectories from initial location in the Beaufort Sea, from Sep 2000-2013

Coastal divergence in the Laptev Sea results in thinner ice, lower September ice extent C. Brunette/McGill

- M1 somewhat skillful despite coarse grid \rightarrow development platform
- **M2-M4** reflect typical resolution in current sea ice forecast models
- **M5-M7** reflect leading-edge current and emerging capabilities
- Aim is to **co-develop** with end users & Canadian Ice Service forecast products relevant to Arctic navigability, decision making
- Emphasizing communication of forecast uncertainty
- Workshop with end users in May 2018, another in 2020

	st. probability	fcst. probability	fcst. probability	fcst. probability	fcst. probability	fcst. probability
0.0	2 0.° 0.° 0.° 2.0 °	0, 2, 0, 0, 0, 0, 2, 0, C	0.2 0.4 0.6 0.8 2.0	0.0 0.2 0. 0. 0. 0. 0. 0. 0. 0.	0, 0,2 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0 0,2 0, ⁴ 0,6 0,8 2,0
e 0.2 - 0.0 -	BS _{rel} = 1.8e-3 BS _{res} = 0.11 BS _{unc} = 0.25	BS _{rel} = 2.7e-3 BS _{res} = 0.10 BS _{unc} = 0.25	$\begin{array}{c} BS_{rel} = 5.2e-3 \\ BS_{res} = 0.093 \\ BS_{unc} = 0.25 \end{array}$	BS _{rel} = 0.013 BS _{res} = 0.099 BS _{unc} = 0.25	$BS_{rel} = 2.6e-3$ $BS_{res} = 0.11$ $BS_{unc} = 0.25$	$BS_{rel} = 1.9e-3$ $BS_{res} = 0.12$ $BS_{unc} = 0.25$

Dirkson, A., W. J. Merryfield and A. H. Monahan, 2018: Calibrated probabilistic forecasts