

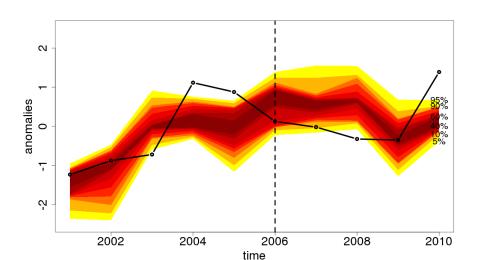
Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

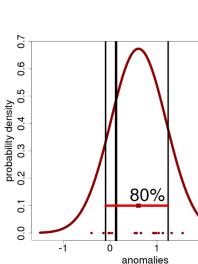
A. Pasternack*, H. W. Rust*, J. Grieger*, M. A. Liniger**, J. Bhend**, W. Müller***, U. Ulbrich*

Abstract

One issue frequently observed for decadal probabilistic forecasts is that they tend to be not reliable and thus need to be re-calibrated. Methods for seasonal time scales have to be adapted for decadal time scales, e.g. climate trend and lead time dependent bias.

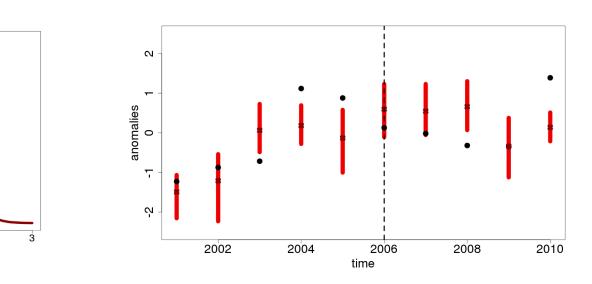
With DeFoReSt³, we proposed a Decadal Climate Forecast Recalibration Strategy to tackle these problems. The original approach of DeFoReSt assumes 3rd and 2nd order polynomials to capture lead year dependent errors and 1st order for start time dependency. Here, we propose not to restrict orders a priori but use a systematic model selection strategy based on non-homogeneous boosting to identify the relevant predictors for recalibrating the Miklip decadal prediction system.


1. Introduction


What is a good Probabilistic forecast?

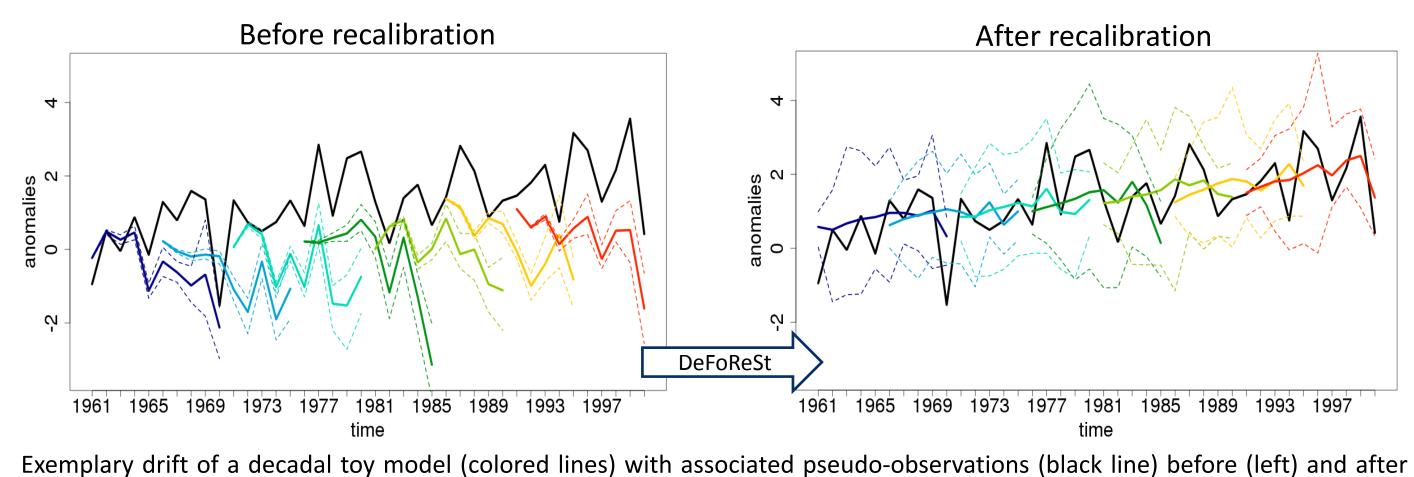
"... an important goal is to maximize <u>sharpness</u> without sacrificing <u>calibration</u>."^{2,6}

Calibration or reliability:


"Ensemble members are reliable if the MSE between the ensemble mean and observations is identical to the time mean intra-ensemble variance."

Sharpness:

Forecasts take a risk, i.e. are frequently different from the climatological value?



Problems of probabilistic decadal forecasts:

"... ensemble distributions typically underestimate the true forecast uncertainty and tend to be <u>overconfident</u> ... " $^5 \rightarrow Adjust ensemble spread$

Characteristic problems of decadal forecasts:

- limited number of hindcasts
- dependence on lead years (drift)
- different climate trends Ens. spread is dependent from lead
- and start year

recalibration with DeFoReSt (right). The dotted lines represent the ensemble minimum/maximum.

References / Acknowledgment

- Ferro, C.A.T., 2013: Fair scores for ensemble forecasts. Q.J.R. Meteorol. Soc. DOI: 10.1002/qj.2270. Gneiting, T. et al., 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon.Weath. Rev.,
- 133, 1098–1118.

www.fona-miklip.de

Model selection for DeFoReSt: a strategy for recalibrating decadal predictions

2. A model selection method for DeFoReSt

Decadal forecast recalibration strategy (DeFoReSt)⁴:

- This approach accounts for a lead and start year dependent unconditional bias (drift), conditional bias and conditional ens. dispersion.
- Assumption: the forecast distribution is Gaussian, thus

$$f^{Cal} \sim \mathcal{N}(\alpha(t,\tau) + \beta(t,\tau)\mu(t,\tau), (\delta(t,\tau)\sigma(t,\tau)))$$

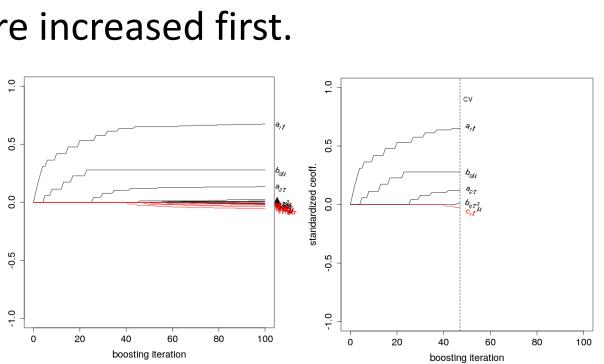
$$\alpha(t,\tau) = \sum_{k=0}^{3} (a_{2k} + a_{2k+1}t)\tau^{k} \qquad \delta(t,\tau) = \sum_{k=0}^{2} (d_{2k}t)$$

$$\beta(t,\tau) = \sum_{k=0}^{3} (b_{2k} + b_{2k+1}t)\tau^{k} \qquad f^{Cal}: \text{ Calibrated Forecas}$$

$$\mu(t,\tau): \text{ Ensemble mean}$$

$$L = -\frac{1}{N} \sum_{j=1}^{N} \log\left(\frac{1}{\delta\sigma_j}\varphi\left(\frac{O_j - \alpha + \delta\sigma_j}{\delta\sigma_j}\right)\right)$$

(For a Gaussian assumption & mean over N time steps)


- Orders of α , β and δ are fixed a priori!
- Is there a better approach?

Model selection with Non-homogenous boosting³: Number of predictors is increased in order to catch all features:

 $f^{MS} \sim \mathcal{N}(\alpha(t,\tau) + \beta(t,\tau)\mu(t,\tau), (\gamma(t,\tau) + \delta(t,\tau)\sigma(t,\tau))^2)$

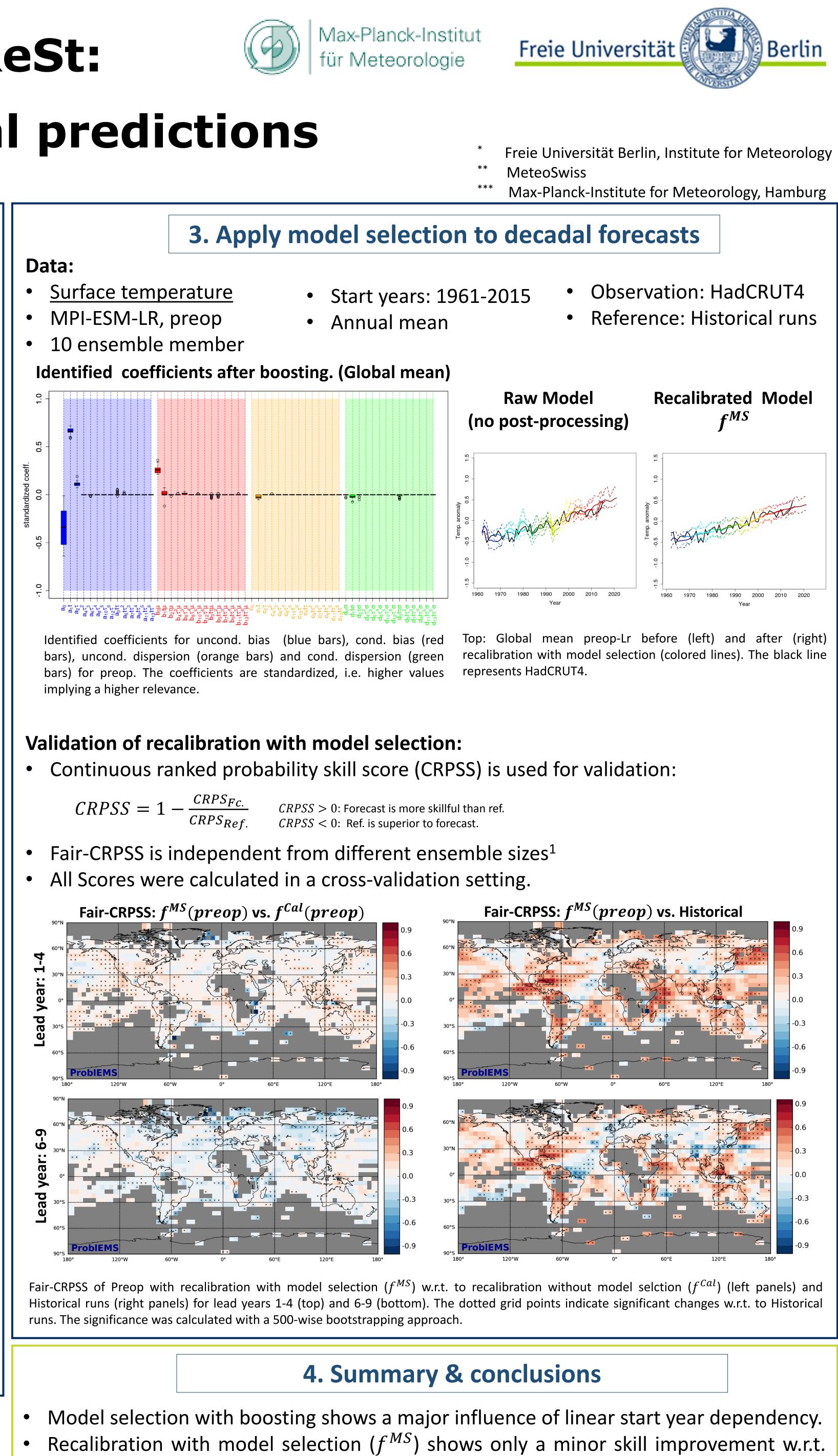
$$\alpha(t,\tau) = \sum_{k=0}^{6} (a_{2k} + a_{2k+1}t)\tau^{k} \qquad \gamma(t,\tau) = \sum_{k=0}^{6} (c_{2k}t)\tau^{k}$$
$$\beta(t,\tau) = \sum_{k=0}^{6} (b_{2k} + b_{2k+1}t)\tau^{k} \qquad \delta(t,\tau) = \sum_{k=0}^{6} (d_{2k}t)\tau^{k}$$

- Boosting iteratively increases model coefficients.
- Most relevant parameters are increased first.
- Best set of coeff. can be found by cross-validation (CV).
- Thus, not relevant parameters are zero.

3. Messner et al., 2017: Nonhomogeneous boosting for predictor selection in ensemble postprocessing. Monthly Weather Review, 145(1):137–147. Pasternack, A. et al. 2018. Parametric decadal climate forecast recalibration (DeFoReSt 1.0)., Geosci. Model Dev., 11, 351-368. Weigel, A.P. et al., 2009: Seasonal ensemble forecasts: Are recalibrated single models better than multimodels? Mon. Weather Rev., 137(4):1460–1479. 6. Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. Academic Press.

 $(t, \tau))^2)$

 $d_k + d_{2k+1}t)\tau^k$


ast t: Start year $\sigma^2(t,\tau)$: Ens. variance τ : Lead year

log-Likelihood L:

 O_i : Observation at time step j φ : PDF of std. norm. distribution

 $_{2k} + c_{2k+1}t)\tau^k$

 $(k + d_{2k+1}t)\tau^k$

- DeFoReSt (f^{Cal}) but is more robust.
- > Outlook: Also use a polynomial approach for start years.

• Model selected recalibration is superior to Historical runs for lead years 1-4 and 6-9.

A. Pasternack, alexander.pasternack@met.fu-berlin.de